Abstract

We demonstrate an all-solid (nonholey), silica-based fiber with anomalous dispersion at wavelengths where silica material dispersion is negative. This is achieved by exploiting the enhanced dispersion engineering capabilities of higher-order modes in a fiber, yielding +60psnmkm dispersion at 1080nm. By coupling to the desired higher-order mode with low-loss in-fiber gratings, we realize a 5m long fiber module with a 300fsnm dispersion that yields a 1dB bandwidth of 51nm with an insertion loss of 0.1dB at the center wavelength of 1080nm. We demonstrate its functionality as a critical enabler for an all-fiber, Yb-based, mode-locked femtosecond ring laser.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
    [CrossRef]
  2. The MOF dispersion was approximated by calculations of dispersion in thin silica rods.
  3. J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, J. Opt. A, Pure Appl. Opt. 6, 667 (2004).
    [CrossRef]
  4. S. Ramachandran, J. Lightwave Technol. 23, 3426 (2005).
    [CrossRef]
  5. L. Gruner-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L. V. Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, J. Lightwave Technol. 23, 3566 (2005).
    [CrossRef]
  6. S. Ramachandran, Z. Wang, and M. F. Yan, Opt. Lett. 27, 698 (2002).
    [CrossRef]
  7. D. Menashe, M. Tur, and Y. Danziger, Electron. Lett. 37, 1439 (2001).
    [CrossRef]
  8. K. Tamura, E. Ippen, H. Haus, and L. Nelson, Opt. Lett. 18, 1080 (1993).
    [CrossRef] [PubMed]

2005

2004

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, J. Opt. A, Pure Appl. Opt. 6, 667 (2004).
[CrossRef]

2002

2001

D. Menashe, M. Tur, and Y. Danziger, Electron. Lett. 37, 1439 (2001).
[CrossRef]

2000

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

1993

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

Birks, T. A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

Bjarklev, A.

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, J. Opt. A, Pure Appl. Opt. 6, 667 (2004).
[CrossRef]

Broeng, J.

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, J. Opt. A, Pure Appl. Opt. 6, 667 (2004).
[CrossRef]

Danziger, Y.

D. Menashe, M. Tur, and Y. Danziger, Electron. Lett. 37, 1439 (2001).
[CrossRef]

Edvold, B.

Gruner-Nielsen, L.

Haus, H.

Ippen, E.

Jakobsen, D.

Jørgensen, C.

Jørgensen, L. V.

Knight, J. C.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

Kristensen, P.

Lægsgaard, J.

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, J. Opt. A, Pure Appl. Opt. 6, 667 (2004).
[CrossRef]

Menashe, D.

D. Menashe, M. Tur, and Y. Danziger, Electron. Lett. 37, 1439 (2001).
[CrossRef]

Nelson, L.

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

Pálsdóttir, B.

Ramachandran, S.

Riishede, J.

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, J. Opt. A, Pure Appl. Opt. 6, 667 (2004).
[CrossRef]

Russell, P. St. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

Tamura, K.

Tur, M.

D. Menashe, M. Tur, and Y. Danziger, Electron. Lett. 37, 1439 (2001).
[CrossRef]

Wadsworth, W. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

Wandel, M.

Wang, Z.

Yan, M. F.

Electron. Lett.

D. Menashe, M. Tur, and Y. Danziger, Electron. Lett. 37, 1439 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[CrossRef]

J. Lightwave Technol.

J. Opt. A, Pure Appl. Opt.

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, J. Opt. A, Pure Appl. Opt. 6, 667 (2004).
[CrossRef]

Opt. Lett.

Other

The MOF dispersion was approximated by calculations of dispersion in thin silica rods.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison of modal behavior between conventional LP 01 (top, schematic) and LP 02 (bottom, simulated) modes. (a) Mode profile versus λ, conventional mode transitions from high to low index; designed HOM shows opposite evolution. Gray background denotes index profile of the fiber; (b) Resultant total dispersion (solid). Also shown are silica material dispersion ( D m , dashed) and zero-dispersion line (dotted). Arrows show the contribution of waveguide dispersion ( D w ) to total dispersion.

Fig. 2
Fig. 2

(a) Index profile of HOM fiber and (b) experimentally imaged near-field image of LP 02 mode with A eff 44 μ m 2 . (c) Schematic of HOM dispersive module—input-output LPGs ensure device is compatible with conventional fibers. (d) Device transmission, 51 nm bandwidth and 0.1 dB total insertion loss at 1080 nm .

Fig. 3
Fig. 3

Dispersion of HOM (solid line), compared with dispersion of conventional SMF (dashed line), measured by spectral interferometry. Also shown is the zero-dispersion line (dotted line).

Fig. 4
Fig. 4

(a) Schematic of stretched-pulse ring laser in which the HOM module is used as the positive dispersion element, (b) typical mode-locked pulse train, (c) spectrum of output pulse: 3 dB width 28 nm .

Metrics