Abstract

Molecular rotors are a unique group of viscosity-sensitive fluorescent probes. Several recent studies have shown their applicability as nonmechanical fluid viscosity sensors, particularly in biofluids containing proteins. To date, molecular rotors have had to be dissolved in the fluid for the measurement to be taken. We now show that molecular rotors may be covalently bound to a fiber-optic tip without loss of viscosity sensitivity. The optical fiber itself may be used as a light guide for emission light (external illumination of the tip) as well as for both emission and excitation light. Covalently bound molecular rotors exhibit a viscosity-dependent intensity increase similar to molecular rotors in solution. An optical fiber-based fluorescent viscosity sensor may be used in real-time measurement applications ranging from biomedical applications to the food industry.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. S. Wolfbeis, Anal. Chem. 76, 3269 (2004).
    [CrossRef] [PubMed]
  2. M. Magrisso, O. Etzion, G. Pilch, A. Novodvoretz, G. Perez-Avraham, F. Schlaeffer, and R. Marks, Biosens. Bioelectron. 21, 1210 (2006).
    [CrossRef]
  3. S. Ko and S. A. Grant, Biosens. Bioelectron. 21, 1283 (2006).
    [CrossRef]
  4. J. R. Epstein, A. P. Leung, K. H. Lee, and D. R. Walt, Biosens. Bioelectron. 18, 541 (2003).
    [CrossRef] [PubMed]
  5. K. Luby-Phelps, Int. Rev. Cytol. 192, 189 (2000).
    [CrossRef]
  6. M. Shinitzky, in Physiology of Membrane Fluidity, M.Shinitzky, ed. (CRC Press, 1984).
  7. G. R. Cokelet, in Biomechanics: Its Foundations and Objectives, Y.C.Fung, N.Perrone, and M.Anliker, eds. (Prentice-Hall, 1972).
  8. W. H. Reinhart, Biorheology 38, 203 (2001).
    [PubMed]
  9. T. A. Hollowood, R. S. T. Linforth, and A. J. Taylor, Chem. Senses 27, 583 (2002).
    [CrossRef] [PubMed]
  10. R. O. Loutfy, Pure Appl. Chem. 58, 1239 (1986).
    [CrossRef]
  11. Th. Förster and G. Hoffmann, Z. Phys. Chem., Neue Folge 75, 63 (1971).
    [CrossRef]
  12. R. O. Loutfy and B. A. Arnold, J. Phys. Chem. 86, 4205 (1982).
    [CrossRef]
  13. S. Falipou, J. M. Chovelon, C. Martelet, J. Margonari, and D. Cathignol, Bioconjugate Chem. 10, 346 (1999).
    [CrossRef]
  14. A. V. Krasnoslobodtsev and S. N. Smirnov, Langmuir 18, 3181 (2002).
    [CrossRef]
  15. L. C. Shriver-Lake, G. P. Anderson, J. P. Golden, and F. S. Ligler, Anal. Lett. 25, 1183 (1992).
    [CrossRef]
  16. W. Akers and M. A. Haidekker, J. Biomech. Eng. 127, 450 (2005).
    [CrossRef] [PubMed]
  17. M. A. Haidekker, T. P. Brady, S. H. Chalian, W. Akers, D. Lichlyter, and E. A. Theodorakis, Bioorg. Chem. 32, 274 (2004).
    [CrossRef] [PubMed]

2006 (2)

M. Magrisso, O. Etzion, G. Pilch, A. Novodvoretz, G. Perez-Avraham, F. Schlaeffer, and R. Marks, Biosens. Bioelectron. 21, 1210 (2006).
[CrossRef]

S. Ko and S. A. Grant, Biosens. Bioelectron. 21, 1283 (2006).
[CrossRef]

2005 (1)

W. Akers and M. A. Haidekker, J. Biomech. Eng. 127, 450 (2005).
[CrossRef] [PubMed]

2004 (2)

M. A. Haidekker, T. P. Brady, S. H. Chalian, W. Akers, D. Lichlyter, and E. A. Theodorakis, Bioorg. Chem. 32, 274 (2004).
[CrossRef] [PubMed]

O. S. Wolfbeis, Anal. Chem. 76, 3269 (2004).
[CrossRef] [PubMed]

2003 (1)

J. R. Epstein, A. P. Leung, K. H. Lee, and D. R. Walt, Biosens. Bioelectron. 18, 541 (2003).
[CrossRef] [PubMed]

2002 (2)

T. A. Hollowood, R. S. T. Linforth, and A. J. Taylor, Chem. Senses 27, 583 (2002).
[CrossRef] [PubMed]

A. V. Krasnoslobodtsev and S. N. Smirnov, Langmuir 18, 3181 (2002).
[CrossRef]

2001 (1)

W. H. Reinhart, Biorheology 38, 203 (2001).
[PubMed]

2000 (1)

K. Luby-Phelps, Int. Rev. Cytol. 192, 189 (2000).
[CrossRef]

1999 (1)

S. Falipou, J. M. Chovelon, C. Martelet, J. Margonari, and D. Cathignol, Bioconjugate Chem. 10, 346 (1999).
[CrossRef]

1992 (1)

L. C. Shriver-Lake, G. P. Anderson, J. P. Golden, and F. S. Ligler, Anal. Lett. 25, 1183 (1992).
[CrossRef]

1986 (1)

R. O. Loutfy, Pure Appl. Chem. 58, 1239 (1986).
[CrossRef]

1982 (1)

R. O. Loutfy and B. A. Arnold, J. Phys. Chem. 86, 4205 (1982).
[CrossRef]

1971 (1)

Th. Förster and G. Hoffmann, Z. Phys. Chem., Neue Folge 75, 63 (1971).
[CrossRef]

Akers, W.

W. Akers and M. A. Haidekker, J. Biomech. Eng. 127, 450 (2005).
[CrossRef] [PubMed]

M. A. Haidekker, T. P. Brady, S. H. Chalian, W. Akers, D. Lichlyter, and E. A. Theodorakis, Bioorg. Chem. 32, 274 (2004).
[CrossRef] [PubMed]

Anderson, G. P.

L. C. Shriver-Lake, G. P. Anderson, J. P. Golden, and F. S. Ligler, Anal. Lett. 25, 1183 (1992).
[CrossRef]

Arnold, B. A.

R. O. Loutfy and B. A. Arnold, J. Phys. Chem. 86, 4205 (1982).
[CrossRef]

Brady, T. P.

M. A. Haidekker, T. P. Brady, S. H. Chalian, W. Akers, D. Lichlyter, and E. A. Theodorakis, Bioorg. Chem. 32, 274 (2004).
[CrossRef] [PubMed]

Cathignol, D.

S. Falipou, J. M. Chovelon, C. Martelet, J. Margonari, and D. Cathignol, Bioconjugate Chem. 10, 346 (1999).
[CrossRef]

Chalian, S. H.

M. A. Haidekker, T. P. Brady, S. H. Chalian, W. Akers, D. Lichlyter, and E. A. Theodorakis, Bioorg. Chem. 32, 274 (2004).
[CrossRef] [PubMed]

Chovelon, J. M.

S. Falipou, J. M. Chovelon, C. Martelet, J. Margonari, and D. Cathignol, Bioconjugate Chem. 10, 346 (1999).
[CrossRef]

Cokelet, G. R.

G. R. Cokelet, in Biomechanics: Its Foundations and Objectives, Y.C.Fung, N.Perrone, and M.Anliker, eds. (Prentice-Hall, 1972).

Epstein, J. R.

J. R. Epstein, A. P. Leung, K. H. Lee, and D. R. Walt, Biosens. Bioelectron. 18, 541 (2003).
[CrossRef] [PubMed]

Etzion, O.

M. Magrisso, O. Etzion, G. Pilch, A. Novodvoretz, G. Perez-Avraham, F. Schlaeffer, and R. Marks, Biosens. Bioelectron. 21, 1210 (2006).
[CrossRef]

Falipou, S.

S. Falipou, J. M. Chovelon, C. Martelet, J. Margonari, and D. Cathignol, Bioconjugate Chem. 10, 346 (1999).
[CrossRef]

Förster, Th.

Th. Förster and G. Hoffmann, Z. Phys. Chem., Neue Folge 75, 63 (1971).
[CrossRef]

Golden, J. P.

L. C. Shriver-Lake, G. P. Anderson, J. P. Golden, and F. S. Ligler, Anal. Lett. 25, 1183 (1992).
[CrossRef]

Grant, S. A.

S. Ko and S. A. Grant, Biosens. Bioelectron. 21, 1283 (2006).
[CrossRef]

Haidekker, M. A.

W. Akers and M. A. Haidekker, J. Biomech. Eng. 127, 450 (2005).
[CrossRef] [PubMed]

M. A. Haidekker, T. P. Brady, S. H. Chalian, W. Akers, D. Lichlyter, and E. A. Theodorakis, Bioorg. Chem. 32, 274 (2004).
[CrossRef] [PubMed]

Hoffmann, G.

Th. Förster and G. Hoffmann, Z. Phys. Chem., Neue Folge 75, 63 (1971).
[CrossRef]

Hollowood, T. A.

T. A. Hollowood, R. S. T. Linforth, and A. J. Taylor, Chem. Senses 27, 583 (2002).
[CrossRef] [PubMed]

Ko, S.

S. Ko and S. A. Grant, Biosens. Bioelectron. 21, 1283 (2006).
[CrossRef]

Krasnoslobodtsev, A. V.

A. V. Krasnoslobodtsev and S. N. Smirnov, Langmuir 18, 3181 (2002).
[CrossRef]

Lee, K. H.

J. R. Epstein, A. P. Leung, K. H. Lee, and D. R. Walt, Biosens. Bioelectron. 18, 541 (2003).
[CrossRef] [PubMed]

Leung, A. P.

J. R. Epstein, A. P. Leung, K. H. Lee, and D. R. Walt, Biosens. Bioelectron. 18, 541 (2003).
[CrossRef] [PubMed]

Lichlyter, D.

M. A. Haidekker, T. P. Brady, S. H. Chalian, W. Akers, D. Lichlyter, and E. A. Theodorakis, Bioorg. Chem. 32, 274 (2004).
[CrossRef] [PubMed]

Ligler, F. S.

L. C. Shriver-Lake, G. P. Anderson, J. P. Golden, and F. S. Ligler, Anal. Lett. 25, 1183 (1992).
[CrossRef]

Linforth, R. S. T.

T. A. Hollowood, R. S. T. Linforth, and A. J. Taylor, Chem. Senses 27, 583 (2002).
[CrossRef] [PubMed]

Loutfy, R. O.

R. O. Loutfy, Pure Appl. Chem. 58, 1239 (1986).
[CrossRef]

R. O. Loutfy and B. A. Arnold, J. Phys. Chem. 86, 4205 (1982).
[CrossRef]

Luby-Phelps, K.

K. Luby-Phelps, Int. Rev. Cytol. 192, 189 (2000).
[CrossRef]

Magrisso, M.

M. Magrisso, O. Etzion, G. Pilch, A. Novodvoretz, G. Perez-Avraham, F. Schlaeffer, and R. Marks, Biosens. Bioelectron. 21, 1210 (2006).
[CrossRef]

Margonari, J.

S. Falipou, J. M. Chovelon, C. Martelet, J. Margonari, and D. Cathignol, Bioconjugate Chem. 10, 346 (1999).
[CrossRef]

Marks, R.

M. Magrisso, O. Etzion, G. Pilch, A. Novodvoretz, G. Perez-Avraham, F. Schlaeffer, and R. Marks, Biosens. Bioelectron. 21, 1210 (2006).
[CrossRef]

Martelet, C.

S. Falipou, J. M. Chovelon, C. Martelet, J. Margonari, and D. Cathignol, Bioconjugate Chem. 10, 346 (1999).
[CrossRef]

Novodvoretz, A.

M. Magrisso, O. Etzion, G. Pilch, A. Novodvoretz, G. Perez-Avraham, F. Schlaeffer, and R. Marks, Biosens. Bioelectron. 21, 1210 (2006).
[CrossRef]

Perez-Avraham, G.

M. Magrisso, O. Etzion, G. Pilch, A. Novodvoretz, G. Perez-Avraham, F. Schlaeffer, and R. Marks, Biosens. Bioelectron. 21, 1210 (2006).
[CrossRef]

Pilch, G.

M. Magrisso, O. Etzion, G. Pilch, A. Novodvoretz, G. Perez-Avraham, F. Schlaeffer, and R. Marks, Biosens. Bioelectron. 21, 1210 (2006).
[CrossRef]

Reinhart, W. H.

W. H. Reinhart, Biorheology 38, 203 (2001).
[PubMed]

Schlaeffer, F.

M. Magrisso, O. Etzion, G. Pilch, A. Novodvoretz, G. Perez-Avraham, F. Schlaeffer, and R. Marks, Biosens. Bioelectron. 21, 1210 (2006).
[CrossRef]

Shinitzky, M.

M. Shinitzky, in Physiology of Membrane Fluidity, M.Shinitzky, ed. (CRC Press, 1984).

Shriver-Lake, L. C.

L. C. Shriver-Lake, G. P. Anderson, J. P. Golden, and F. S. Ligler, Anal. Lett. 25, 1183 (1992).
[CrossRef]

Smirnov, S. N.

A. V. Krasnoslobodtsev and S. N. Smirnov, Langmuir 18, 3181 (2002).
[CrossRef]

Taylor, A. J.

T. A. Hollowood, R. S. T. Linforth, and A. J. Taylor, Chem. Senses 27, 583 (2002).
[CrossRef] [PubMed]

Theodorakis, E. A.

M. A. Haidekker, T. P. Brady, S. H. Chalian, W. Akers, D. Lichlyter, and E. A. Theodorakis, Bioorg. Chem. 32, 274 (2004).
[CrossRef] [PubMed]

Walt, D. R.

J. R. Epstein, A. P. Leung, K. H. Lee, and D. R. Walt, Biosens. Bioelectron. 18, 541 (2003).
[CrossRef] [PubMed]

Wolfbeis, O. S.

O. S. Wolfbeis, Anal. Chem. 76, 3269 (2004).
[CrossRef] [PubMed]

Anal. Chem. (1)

O. S. Wolfbeis, Anal. Chem. 76, 3269 (2004).
[CrossRef] [PubMed]

Anal. Lett. (1)

L. C. Shriver-Lake, G. P. Anderson, J. P. Golden, and F. S. Ligler, Anal. Lett. 25, 1183 (1992).
[CrossRef]

Bioconjugate Chem. (1)

S. Falipou, J. M. Chovelon, C. Martelet, J. Margonari, and D. Cathignol, Bioconjugate Chem. 10, 346 (1999).
[CrossRef]

Bioorg. Chem. (1)

M. A. Haidekker, T. P. Brady, S. H. Chalian, W. Akers, D. Lichlyter, and E. A. Theodorakis, Bioorg. Chem. 32, 274 (2004).
[CrossRef] [PubMed]

Biorheology (1)

W. H. Reinhart, Biorheology 38, 203 (2001).
[PubMed]

Biosens. Bioelectron. (3)

M. Magrisso, O. Etzion, G. Pilch, A. Novodvoretz, G. Perez-Avraham, F. Schlaeffer, and R. Marks, Biosens. Bioelectron. 21, 1210 (2006).
[CrossRef]

S. Ko and S. A. Grant, Biosens. Bioelectron. 21, 1283 (2006).
[CrossRef]

J. R. Epstein, A. P. Leung, K. H. Lee, and D. R. Walt, Biosens. Bioelectron. 18, 541 (2003).
[CrossRef] [PubMed]

Chem. Senses (1)

T. A. Hollowood, R. S. T. Linforth, and A. J. Taylor, Chem. Senses 27, 583 (2002).
[CrossRef] [PubMed]

Int. Rev. Cytol. (1)

K. Luby-Phelps, Int. Rev. Cytol. 192, 189 (2000).
[CrossRef]

J. Biomech. Eng. (1)

W. Akers and M. A. Haidekker, J. Biomech. Eng. 127, 450 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. (1)

R. O. Loutfy and B. A. Arnold, J. Phys. Chem. 86, 4205 (1982).
[CrossRef]

Langmuir (1)

A. V. Krasnoslobodtsev and S. N. Smirnov, Langmuir 18, 3181 (2002).
[CrossRef]

Pure Appl. Chem. (1)

R. O. Loutfy, Pure Appl. Chem. 58, 1239 (1986).
[CrossRef]

Z. Phys. Chem., Neue Folge (1)

Th. Förster and G. Hoffmann, Z. Phys. Chem., Neue Folge 75, 63 (1971).
[CrossRef]

Other (2)

M. Shinitzky, in Physiology of Membrane Fluidity, M.Shinitzky, ed. (CRC Press, 1984).

G. R. Cokelet, in Biomechanics: Its Foundations and Objectives, Y.C.Fung, N.Perrone, and M.Anliker, eds. (Prentice-Hall, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Functionalization of a fiber-optic tip with either CCVJ or fluorescein (FRS).

Fig. 2
Fig. 2

Epifluorescent image of the fiber tip sections where the cladding was removed. Both fibers were illuminated at the distal end with a 440 nm laser. Image A shows a fiber without any immobilized dye (control). The emitted light is caused by fiber autofluorescence. Image B shows a fiber with immobilized CCVJ (5a). Stronger green emission intensity, on average 20% higher than that of the control fiber, is clearly visible. The scale bar is 150 μ m .

Fig. 3
Fig. 3

Emission spectra of immobilized CCVJ (5a) and FRS (5b) when excited through the fiber at 440 nm . CCVJ emission intensity increases in fluids of higher viscosity.

Fig. 4
Fig. 4

Viscosity-intensity relationship of immobilized CCVJ (5a) and FRS (5b) under internal illumination of the tip. The error bars indicate standard deviation for n = 4 independent experiments.

Fig. 5
Fig. 5

Viscosity–intensity relationship of fiber immobilized CCVJ (5a) and FRS (5b) under external laser illumination of the tip. The error bars indicate a standard deviation for n = 4 independent experiments.

Tables (1)

Tables Icon

Table 1 List of the Test Fluids (Mixtures of Methanol and Ethylene Glycol) with Their Respective Physical Properties

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

log ϕ F = C + x log η .
I M = C η x .

Metrics