Abstract

We demonstrate soliton self-frequency shift of more than 12% of the optical frequency in a higher-order mode solid, silica-based fiber below 1300nm. This new class of fiber shows great promise for supporting Raman-shifted solitons below 1300nm in intermediate energy regimes of 1 to 10nJ that cannot be reached by index-guided photonic crystal fibers or air-core photonic bandgap fibers. By changing the input pulse energy of 200fs pulses from 1.36 to 1.63nJ we observe Raman-shifted solitons between 1064 and 1200nm with up to 57% power conversion efficiency and compressed output pulse widths less than 50fs. Furthermore, due to the dispersion characteristics of the HOM fiber, we observe redshifted Čerenkov radiation in the normal dispersion regime for appropriately energetic input pulses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, JETP Lett. 41, 294 (1985).
  2. N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
    [Crossref]
  3. M. E. Fermann, A. Galvanauskas, M. L. Stock, K. K. Wong, D. Harter, and L. Goldberg, Opt. Lett. 24, 1428 (1999).
    [Crossref]
  4. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, Opt. Lett. 26, 358 (2001).
    [Crossref]
  5. B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, Electron. Lett. 37, 1510 (2001).
    [Crossref]
  6. H. Lim, J. Buckley, A. Chong, and F. W. Wise, Electron. Lett. 40, 1523 (2004).
    [Crossref]
  7. F. Luan, J. C. Knight, P. S. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, Opt. Express 12, 835 (2004).
    [Crossref] [PubMed]
  8. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
    [Crossref]
  9. A. Diaspro, Confocal and Two-Photon Microscopy (Wiley-Liss, 2002).
  10. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, E. Monberg, and F. V. Dimarcello, Opt. Lett. 31, 2532 (2006).
    [Crossref] [PubMed]
  11. S. Ramachandran, J. Lightwave Technol. 23, 3426 (2005).
    [Crossref]
  12. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  13. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. Russell, Science 301, 1705 (2003).
    [Crossref] [PubMed]
  14. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, Opt. Lett. 31, 1797 (2006).
    [Crossref] [PubMed]

2006 (2)

2005 (1)

2004 (2)

2003 (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. Russell, Science 301, 1705 (2003).
[Crossref] [PubMed]

2001 (2)

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, Opt. Lett. 26, 358 (2001).
[Crossref]

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, Electron. Lett. 37, 1510 (2001).
[Crossref]

2000 (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[Crossref]

1999 (2)

1985 (1)

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, JETP Lett. 41, 294 (1985).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[Crossref]

Birks, T. A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[Crossref]

Buckley, J.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, Electron. Lett. 40, 1523 (2004).
[Crossref]

Campbell, S.

Chandalia, J. K.

Chong, A.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, Electron. Lett. 40, 1523 (2004).
[Crossref]

Coen, S.

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, Electron. Lett. 37, 1510 (2001).
[Crossref]

Dianov, E. M.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, JETP Lett. 41, 294 (1985).

Diaspro, A.

A. Diaspro, Confocal and Two-Photon Microscopy (Wiley-Liss, 2002).

Dimarcello, F. V.

Dudley, J. M.

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, Electron. Lett. 37, 1510 (2001).
[Crossref]

Eggleton, B. J.

Fermann, M. E.

Fomichev, A. A.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, JETP Lett. 41, 294 (1985).

Galvanauskas, A.

Ghalmi, S.

Goldberg, L.

Goto, T.

N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
[Crossref]

Harter, D.

Karasik, A. Y.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, JETP Lett. 41, 294 (1985).

Knight, J. C.

F. Luan, J. C. Knight, P. S. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, Opt. Express 12, 835 (2004).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. Russell, Science 301, 1705 (2003).
[Crossref] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[Crossref]

Knox, W. H.

Kosinski, S. G.

Lacourt, P. A.

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, Electron. Lett. 37, 1510 (2001).
[Crossref]

Lim, H.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, Electron. Lett. 40, 1523 (2004).
[Crossref]

Liu, X.

Luan, F.

Mamyshev, P. V.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, JETP Lett. 41, 294 (1985).

Mangan, B. J.

Monberg, E.

Nicholson, J. W.

Nishizawa, N.

N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
[Crossref]

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[Crossref]

Prokhorov, A. M.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, JETP Lett. 41, 294 (1985).

Ralph, S. E.

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, Electron. Lett. 37, 1510 (2001).
[Crossref]

Ramachandran, S.

Reid, D. T.

Rhodes, W. T.

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, Electron. Lett. 37, 1510 (2001).
[Crossref]

Roberts, P. J.

Russell, P. S.

F. Luan, J. C. Knight, P. S. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, Opt. Express 12, 835 (2004).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. Russell, Science 301, 1705 (2003).
[Crossref] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[Crossref]

Serkin, V. N.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, JETP Lett. 41, 294 (1985).

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. Russell, Science 301, 1705 (2003).
[Crossref] [PubMed]

Stelmakh, M. F.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, JETP Lett. 41, 294 (1985).

Stock, M. L.

Wadsworth, W. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[Crossref]

Washburn, B. R.

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, Electron. Lett. 37, 1510 (2001).
[Crossref]

Williams, D. P.

Windeler, R. S.

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, Opt. Lett. 26, 358 (2001).
[Crossref]

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, Electron. Lett. 37, 1510 (2001).
[Crossref]

Wise, F. W.

H. Lim, J. Buckley, A. Chong, and F. W. Wise, Electron. Lett. 40, 1523 (2004).
[Crossref]

Wisk, P.

Wong, K. K.

Xiao, D.

Xu, C.

Yan, M. F.

Electron. Lett. (2)

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, Electron. Lett. 37, 1510 (2001).
[Crossref]

H. Lim, J. Buckley, A. Chong, and F. W. Wise, Electron. Lett. 40, 1523 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (2)

N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
[Crossref]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, IEEE Photon. Technol. Lett. 12, 807 (2000).
[Crossref]

J. Lightwave Technol. (1)

JETP Lett. (1)

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, JETP Lett. 41, 294 (1985).

Opt. Express (1)

Opt. Lett. (4)

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. Russell, Science 301, 1705 (2003).
[Crossref] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

A. Diaspro, Confocal and Two-Photon Microscopy (Wiley-Liss, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Total dispersion for propagation in the LP 02 mode. (b) Experimental near-field image of the LP 02 mode with effective area A eff = 44 μ m 2 . (c) Experimental setup used to couple light through the HOM fiber module.

Fig. 2
Fig. 2

(a) Soliton self-frequency shifted spectra corresponding to different input pulse energies into the HOM fiber. All traces taken at 4.0 nm resolution bandwidth (RBW). Input pulse energy noted on each trace. (b) High-resolution trace of the initial spectrum, 0.1 nm RBW. (c) High-resolution trace of the shifted soliton for 1.63 nJ input into the HOM, 0.1 nm RBW. (d) Soliton self-frequency shifted spectra calculated from simulation by using a 200 fs input Gaussian pulse and shifted soliton energies comparable with those in (a). Input pulse energy noted on each trace.

Fig. 3
Fig. 3

Second-order interferometric autocorrelation trace of HOM output for 1.39 nJ input pulses. Autocorrelation FWHM measured to be 92 fs , corresponding to a deconvolved pulse width of 49 fs .

Metrics