Abstract

We demonstrate soliton self-frequency shift of more than 12% of the optical frequency in a higher-order mode solid, silica-based fiber below 1300nm. This new class of fiber shows great promise for supporting Raman-shifted solitons below 1300nm in intermediate energy regimes of 1 to 10nJ that cannot be reached by index-guided photonic crystal fibers or air-core photonic bandgap fibers. By changing the input pulse energy of 200fs pulses from 1.36 to 1.63nJ we observe Raman-shifted solitons between 1064 and 1200nm with up to 57% power conversion efficiency and compressed output pulse widths less than 50fs. Furthermore, due to the dispersion characteristics of the HOM fiber, we observe redshifted Čerenkov radiation in the normal dispersion regime for appropriately energetic input pulses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription