Abstract

This Letter demonstrates a polarization-maintaining higher-order mode fiber module that has anomalous dispersion at 1 μm. The group velocity dispersion of the module is measured, showing a split of the two polarization axes. The excellent polarization-maintaining properties of the relevant fiber modes for the higher-order mode fiber are likewise demonstrated employing a new simple method for the measurement of the beat length of higher-order modes at a single wavelength. The higher-order fiber module is intended for group velocity dispersion compensation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
    [CrossRef]
  2. S. Ramachandran, Fiber Based Dispersion Compensation, 1st ed. (Springer Science+Business Media, 2007).
  3. L. Grüner-Nielsen, S. Ramachandran, K. Jespersen, S. Ghalmi, M. Garmund, and B. Pálsdóttir, Proc. SPIE 6873, 68730Q (2008).
    [CrossRef]
  4. J. W. Nicholson, S. Ramachandran, and S. Ghalmi, Opt. Express 15, 6623 (2007).
    [CrossRef]
  5. M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, Opt. Lett. 32, 2372 (2007).
    [CrossRef]
  6. X. Liu, J. Lægsgaard, and D. Turchinovich, IEEE Laser and Electro-Optics Society Annual Meeting (LEOS) (2009), pp. 385–386.
  7. B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE J. Quantum Electron. 18, 1509 (1982).
    [CrossRef]
  8. D. Donlagic, J. Lightwave Technol. 24, 3532 (2006).
    [CrossRef]
  9. D. Menashe, M. Tur, and Y. Danziger, Electron. Lett. 37, 1439 (2001).
    [CrossRef]
  10. T. Geisler and S. Herstrøm, Opt. Express 19, B283–B288 (2011).
    [CrossRef]
  11. M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, Appl. Opt. 50, 2594 (2011).
    [CrossRef]
  12. http://ofscatalog.specialtyphotonics.com/item/polarization-maintaining-optical-fibers/clearlite-truephase-fibers-980/f9920-01?
  13. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, Opt. Lett. 31, 2532 (2006).
    [CrossRef]

2011 (2)

2008 (1)

L. Grüner-Nielsen, S. Ramachandran, K. Jespersen, S. Ghalmi, M. Garmund, and B. Pálsdóttir, Proc. SPIE 6873, 68730Q (2008).
[CrossRef]

2007 (2)

2006 (2)

2001 (1)

D. Menashe, M. Tur, and Y. Danziger, Electron. Lett. 37, 1439 (2001).
[CrossRef]

1994 (1)

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

1982 (1)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE J. Quantum Electron. 18, 1509 (1982).
[CrossRef]

Costa, B.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE J. Quantum Electron. 18, 1509 (1982).
[CrossRef]

Danziger, Y.

D. Menashe, M. Tur, and Y. Danziger, Electron. Lett. 37, 1439 (2001).
[CrossRef]

DiGiovanni, D. J.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

Dimarcello, F. V.

Donlagic, D.

Garmund, M.

L. Grüner-Nielsen, S. Ramachandran, K. Jespersen, S. Ghalmi, M. Garmund, and B. Pálsdóttir, Proc. SPIE 6873, 68730Q (2008).
[CrossRef]

Geisler, T.

Ghalmi, S.

Grüner-Nielsen, L.

L. Grüner-Nielsen, S. Ramachandran, K. Jespersen, S. Ghalmi, M. Garmund, and B. Pálsdóttir, Proc. SPIE 6873, 68730Q (2008).
[CrossRef]

Herstrøm, S.

Hlubina, P.

Hollenbach, U.

Jespersen, K.

L. Grüner-Nielsen, S. Ramachandran, K. Jespersen, S. Ghalmi, M. Garmund, and B. Pálsdóttir, Proc. SPIE 6873, 68730Q (2008).
[CrossRef]

Kracht, D.

Lægsgaard, J.

X. Liu, J. Lægsgaard, and D. Turchinovich, IEEE Laser and Electro-Optics Society Annual Meeting (LEOS) (2009), pp. 385–386.

Liu, X.

X. Liu, J. Lægsgaard, and D. Turchinovich, IEEE Laser and Electro-Optics Society Annual Meeting (LEOS) (2009), pp. 385–386.

Mazzoni, D.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE J. Quantum Electron. 18, 1509 (1982).
[CrossRef]

Menashe, D.

D. Menashe, M. Tur, and Y. Danziger, Electron. Lett. 37, 1439 (2001).
[CrossRef]

Mohr, J.

Monberg, E.

Napiorkowski, M.

Nicholson, J. W.

Pálsdóttir, B.

L. Grüner-Nielsen, S. Ramachandran, K. Jespersen, S. Ghalmi, M. Garmund, and B. Pálsdóttir, Proc. SPIE 6873, 68730Q (2008).
[CrossRef]

Poole, C. D.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

Prochnow, O.

Puleo, M.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE J. Quantum Electron. 18, 1509 (1982).
[CrossRef]

Ramachandran, S.

Ruehl, A.

Schultz, M.

Sieber, H.

Szczurowski, M.

Tur, M.

D. Menashe, M. Tur, and Y. Danziger, Electron. Lett. 37, 1439 (2001).
[CrossRef]

Turchinovich, D.

X. Liu, J. Lægsgaard, and D. Turchinovich, IEEE Laser and Electro-Optics Society Annual Meeting (LEOS) (2009), pp. 385–386.

Urbanczyk, W.

Vengsarkar, A. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

Vezzoni, E.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE J. Quantum Electron. 18, 1509 (1982).
[CrossRef]

Wandt, D.

Wiesenfeld, J. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

Wisk, P.

Yan, M. F.

Appl. Opt. (1)

Electron. Lett. (1)

D. Menashe, M. Tur, and Y. Danziger, Electron. Lett. 37, 1439 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE J. Quantum Electron. 18, 1509 (1982).
[CrossRef]

J. Lightwave Technol. (2)

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, J. Lightwave Technol. 12, 1746 (1994).
[CrossRef]

D. Donlagic, J. Lightwave Technol. 24, 3532 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (1)

L. Grüner-Nielsen, S. Ramachandran, K. Jespersen, S. Ghalmi, M. Garmund, and B. Pálsdóttir, Proc. SPIE 6873, 68730Q (2008).
[CrossRef]

Other (3)

X. Liu, J. Lægsgaard, and D. Turchinovich, IEEE Laser and Electro-Optics Society Annual Meeting (LEOS) (2009), pp. 385–386.

S. Ramachandran, Fiber Based Dispersion Compensation, 1st ed. (Springer Science+Business Media, 2007).

http://ofscatalog.specialtyphotonics.com/item/polarization-maintaining-optical-fibers/clearlite-truephase-fibers-980/f9920-01?

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Basic scheme for GVD compensation using a HOM fiber module. LP01 and LP02 describe the propagated fiber mode.

Fig. 2.
Fig. 2.

(a) Relative group delay measurement of LP01 along slow and fast axis using the phase delay method. (b) GVD of LP01 based on numerical differentiation of the data in (a) along both fast and slow axes. The insets show zooms of the data.

Fig. 3.
Fig. 3.

Relative group delay measurement for LP02 along slow and fast axes within the bandwidth of the GVD compensating HOM fiber module. In the inset, the GVD based on a numerical differentiation of the relative group delay is plotted.

Fig. 4.
Fig. 4.

Indirect measurement of the relative group delay of LP02. The measurement is based on the sum of the measurement of the absolute difference in the group delay of LP02 and LP01, which is shown in the inset, and an extrapolation of the relative group delay of LP01, plotted in Fig. 2(a).

Fig. 5.
Fig. 5.

MPI measurement of a GVD compensating PM HOM module with a resolution of 0.1 nm. The MPI and 1 dB bandwidth of the module are determined to 39.7dB and 41 nm, respectively. The inset shows the basis of the MPI calculation.

Metrics