Abstract

Modelocking in an Yb-doped figure-eight fiber laser is demonstrated utilizing anomalous dispersion from an LP02 higher-order-mode fiber for dispersion management. Outside the laser cavity, the pulses were re-compressed to 95 fs using a second HOM module, the shortest demonstrated pulses to date from an Yb-doped figure-eight fiber laser. Operation of the laser with HOM fiber in the cavity is compared to an Yb figure-eight laser that utilizes all-normal dispersion fibers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Dennis and I. N. Duling, "Exerimental study of sideband generation in Femtosecond Fiber Lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994).
    [CrossRef]
  2. H. Lim, F. ¨O. Ilday, and F. W. Wise, "Femtosecond Ytterbium Fiber Laser with Photonic Crystal Fiber for dispersion control," Opt. Express 10, 1497-1502 (2002).
    [PubMed]
  3. H. Lim and F. W. Wise, "Control of dispersion in a Femtosecond Ytterbium Laser by use of Hollow-Core Photonic Bandgap Fiber," Opt. Express 12, 2231-2235 (2004).
    [CrossRef] [PubMed]
  4. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Totally fiber integrated, figure-of-eight femtosecond source at 1065 Nm," Opt. Express 11, 265-269 (2003).
    [CrossRef] [PubMed]
  5. J. W. Nicholson and M. Andrejco, "A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser," Opt. Express 14, 8160-8167 (2006).
    [CrossRef] [PubMed]
  6. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Anomalous dispersion in a solid, silica-based fiber," Opt. Lett. 31, 2532-2534 (2006).
    [CrossRef] [PubMed]
  7. A. Chong, J. Buckley, W. Renninger, and F. Wise, "All normal-dispersion femtosecond fiber laser," Opt. Express 14, 10,095-10,100 (2006).
    [CrossRef]
  8. L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1788-1790 (2006).
    [CrossRef] [PubMed]
  9. M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an Erbium-doped fiber laser," Opt. Lett. 22, 799-801 (1997).
    [CrossRef] [PubMed]
  10. D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, "Pulse repetition rates in passive, selfstarting, femtosecond soliton fibre laser," Electron. Lett. 27, 1451-1453 (1991).
    [CrossRef]
  11. P. Grelu, F. Belhache, F. Gutty, and J. M. Soto-Crespo, "Relative phase locking of pulses in a passively modelocked fiber laser," J. Opt. Soc. Am. B 20, 863-870 (2003).
    [CrossRef]

2006 (4)

2004 (1)

2003 (2)

2002 (1)

1997 (1)

1994 (1)

M. L. Dennis and I. N. Duling, "Exerimental study of sideband generation in Femtosecond Fiber Lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994).
[CrossRef]

1991 (1)

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, "Pulse repetition rates in passive, selfstarting, femtosecond soliton fibre laser," Electron. Lett. 27, 1451-1453 (1991).
[CrossRef]

Andrejco, M.

Avdokhin, A. V.

Barad, Y.

Belhache, F.

Buckley, J.

A. Chong, J. Buckley, W. Renninger, and F. Wise, "All normal-dispersion femtosecond fiber laser," Opt. Express 14, 10,095-10,100 (2006).
[CrossRef]

Chong, A.

A. Chong, J. Buckley, W. Renninger, and F. Wise, "All normal-dispersion femtosecond fiber laser," Opt. Express 14, 10,095-10,100 (2006).
[CrossRef]

Dennis, M. L.

M. L. Dennis and I. N. Duling, "Exerimental study of sideband generation in Femtosecond Fiber Lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994).
[CrossRef]

Dimarcello, F. V.

Duling, I. N.

M. L. Dennis and I. N. Duling, "Exerimental study of sideband generation in Femtosecond Fiber Lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994).
[CrossRef]

Ghalmi, S.

Grelu, P.

Gutty, F.

Horowitz, M.

Laming, R. I.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, "Pulse repetition rates in passive, selfstarting, femtosecond soliton fibre laser," Electron. Lett. 27, 1451-1453 (1991).
[CrossRef]

Lim, H.

Matsas, V. J.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, "Pulse repetition rates in passive, selfstarting, femtosecond soliton fibre laser," Electron. Lett. 27, 1451-1453 (1991).
[CrossRef]

Monberg, E.

Nicholson, J. W.

Payne, D. N.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, "Pulse repetition rates in passive, selfstarting, femtosecond soliton fibre laser," Electron. Lett. 27, 1451-1453 (1991).
[CrossRef]

Phillips, M. W.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, "Pulse repetition rates in passive, selfstarting, femtosecond soliton fibre laser," Electron. Lett. 27, 1451-1453 (1991).
[CrossRef]

Popov, S. V.

Ramachandran, S.

Renninger, W.

A. Chong, J. Buckley, W. Renninger, and F. Wise, "All normal-dispersion femtosecond fiber laser," Opt. Express 14, 10,095-10,100 (2006).
[CrossRef]

Richardson, D. J.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, "Pulse repetition rates in passive, selfstarting, femtosecond soliton fibre laser," Electron. Lett. 27, 1451-1453 (1991).
[CrossRef]

Silberberg, Y.

Soto-Crespo, J. M.

Tang, D. Y.

Taylor, J. R.

Wise, F.

A. Chong, J. Buckley, W. Renninger, and F. Wise, "All normal-dispersion femtosecond fiber laser," Opt. Express 14, 10,095-10,100 (2006).
[CrossRef]

Wise, F. W.

Wisk, P.

Wu, J.

Yan, M. F.

Zhao, L. M.

Electron. Lett. (1)

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, "Pulse repetition rates in passive, selfstarting, femtosecond soliton fibre laser," Electron. Lett. 27, 1451-1453 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. L. Dennis and I. N. Duling, "Exerimental study of sideband generation in Femtosecond Fiber Lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a). Measured transmission loss of an HOM module (schematic of module in inset). (b) Measured dispersion of the HOM compared to dispersion in a conventional SMF.

Fig. 2.
Fig. 2.

Schematic of the Yb-doped figure-eight fiber laser.

Fig. 3.
Fig. 3.

(a). Spectral shapes observed in the modelocked, figure-eight Yb-doped fiber laser (b) Measured 10 dB spectral with as a function of cavity repetition frequency as the amount of normal dispersion fiber in the cavity was adjusted.

Fig. 4.
Fig. 4.

Soliton bunching, measured with a high speed (30 ps) detector and sampling oscilloscope. The corresponding spectrum is similar to the soliton spectrum shown in Fig. 3(a)

Fig. 5.
Fig. 5.

(a). Broadest modelocked spectrum of the figure eight laser with and without the HOM in the laser cavity. (b). Pulse train measured with the HOM fiber in the laser.

Fig. 6.
Fig. 6.

(a). Autocorrelation of the stretched pulse from the all-normal dispersion laser cavity. (b) Autocorrelation of the compressed pulse with the HOM module in the cavity. The correlation was measured after the second extra-cavity HOM module that was used for chirp removal. Note the difference in time scales between (a) and (b).

Metrics