Abstract

The resolution of surface plasmon resonance sensors in the geometry of Kretschmann is estimated by numerical simulation for different thicknesses of combinations of silver (Ag), copper, and aluminum (Al) metallic layers with a gold coating layer at set of wavelengths in cases of detecting the change of the refractive index of the bulk medium and the change in optical thickness of an adsorption layer. The lowest resolution among the examined combinations of the sensors is achieved with a single Al layer for ultraviolet region and with a single Ag layer for longer wavelengths.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).
  2. R. B. M. Schasfoort and A. J. Tudos, eds., Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, 2008).
  3. E. Kretschmann, “Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).
    [CrossRef]
  4. K. Kukanskis, J. Elkind, J. Melendez, T. Murphy, G. Miller, and H. Garner, “Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor,” Anal. Biochem. 274, 7–17 (1999).
    [CrossRef]
  5. Z. Sekkat, J. Wood, Y. Geerts, and W. Knoll, “Surface plasmon investigations of light-induced modulation in the optical thickness of molecularly thin photochromic layers,” Langmuir 12, 2976–2980 (1996).
    [CrossRef]
  6. C. Bartual-Murgui, L. Salmon, A. Akou, G. Molnar, T. Mahfoud, A. Bousseksou, C. Thibault, Z. Sekkat, and J. A. Real, “High quality nano-patterned thin films of the coordination compound {Fe(pyrazine)[Pt(CN)2]} deposited layer-by-layer,” New J. Chem. 35, 2089–2094 (2011).
    [CrossRef]
  7. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
    [CrossRef]
  8. X. Wang, M. Jefferson, P. C. Hobbs, W. P. Risk, B. E. Feller, R. D. Miller, and A. Knoesen, “Shot-noise limited detection for surface plasmon sensing,” Opt. Express 19, 107–117 (2011).
    [CrossRef]
  9. T. Davis and W. Wilson, “Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data,” Anal. Biochem. 284, 348–353 (2000).
    [CrossRef]
  10. M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A 125, 296–303 (2006).
    [CrossRef]
  11. C. Hu and D. Liu, “High-performance grating coupled surface plasmon resonance sensor based on Al–Au bimetallic layer,” Mod. Appl. Sci. 4, 8–13 (2010).
  12. R. Jha and A. K. Sharma, “High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared,” Opt. Lett. 34, 749–751 (2009).
    [CrossRef]
  13. B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators 114, 1028–1034 (2006).
    [CrossRef]
  14. J. Homola and J. Dostálek, eds., Surface Plasmon Resonance Based Sensors (Springer, 2006).
  15. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: Approaching their limits?,” Opt. Express 17, 16505–16517 (2009).
    [CrossRef]
  16. N. J. Goddard, D. Pollard-Knight, and C. H. Maule, “Real-time biomolecular interaction analysis using the resonant mirror sensor,” Analyst 119, 583–588 (1994).
    [CrossRef]
  17. P. Nagpal, D. J. Norris, N. C. Lindquist, and S. H. Oh, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
    [CrossRef]
  18. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876(1996).
    [CrossRef]
  19. M. V. Klein and T. E. Furtak, eds., Optics (Wiley, 1986), p. 295.
  20. D. V. Nesterenko, “Modeling of diffraction of electromagnetic waves on periodic inhomogeneities by a finite element method coupled with the Rayleigh expansion,” Optoelectron. Instrum. Data Process. 47, 68–75 (2011).
    [CrossRef]
  21. M. Born and E. Wolf, eds., Principles of Optics (Pergamon, 1999).
  22. M. Fujimaki and K. Awazu, “Development of high-sensitivity molecular adsorption detection sensors,” Synthesiology 2, 142–153 (2009).
    [CrossRef]
  23. E. D. Palik, ed., Handbook of Optical Constants of Solids(Academic Press, 1985).
  24. A. D. Rakic, “Algorithm for the determination of intrinsic optical constants of metal films: Application to aluminum,” Appl. Opt. 34, 4755–4767 (1995).
    [CrossRef]

2011 (3)

C. Bartual-Murgui, L. Salmon, A. Akou, G. Molnar, T. Mahfoud, A. Bousseksou, C. Thibault, Z. Sekkat, and J. A. Real, “High quality nano-patterned thin films of the coordination compound {Fe(pyrazine)[Pt(CN)2]} deposited layer-by-layer,” New J. Chem. 35, 2089–2094 (2011).
[CrossRef]

X. Wang, M. Jefferson, P. C. Hobbs, W. P. Risk, B. E. Feller, R. D. Miller, and A. Knoesen, “Shot-noise limited detection for surface plasmon sensing,” Opt. Express 19, 107–117 (2011).
[CrossRef]

D. V. Nesterenko, “Modeling of diffraction of electromagnetic waves on periodic inhomogeneities by a finite element method coupled with the Rayleigh expansion,” Optoelectron. Instrum. Data Process. 47, 68–75 (2011).
[CrossRef]

2010 (1)

C. Hu and D. Liu, “High-performance grating coupled surface plasmon resonance sensor based on Al–Au bimetallic layer,” Mod. Appl. Sci. 4, 8–13 (2010).

2009 (4)

R. Jha and A. K. Sharma, “High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared,” Opt. Lett. 34, 749–751 (2009).
[CrossRef]

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: Approaching their limits?,” Opt. Express 17, 16505–16517 (2009).
[CrossRef]

M. Fujimaki and K. Awazu, “Development of high-sensitivity molecular adsorption detection sensors,” Synthesiology 2, 142–153 (2009).
[CrossRef]

P. Nagpal, D. J. Norris, N. C. Lindquist, and S. H. Oh, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef]

2008 (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[CrossRef]

2006 (2)

M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A 125, 296–303 (2006).
[CrossRef]

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators 114, 1028–1034 (2006).
[CrossRef]

2000 (1)

T. Davis and W. Wilson, “Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data,” Anal. Biochem. 284, 348–353 (2000).
[CrossRef]

1999 (1)

K. Kukanskis, J. Elkind, J. Melendez, T. Murphy, G. Miller, and H. Garner, “Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor,” Anal. Biochem. 274, 7–17 (1999).
[CrossRef]

1996 (2)

Z. Sekkat, J. Wood, Y. Geerts, and W. Knoll, “Surface plasmon investigations of light-induced modulation in the optical thickness of molecularly thin photochromic layers,” Langmuir 12, 2976–2980 (1996).
[CrossRef]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876(1996).
[CrossRef]

1995 (1)

1994 (1)

N. J. Goddard, D. Pollard-Knight, and C. H. Maule, “Real-time biomolecular interaction analysis using the resonant mirror sensor,” Analyst 119, 583–588 (1994).
[CrossRef]

1972 (1)

E. Kretschmann, “Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).
[CrossRef]

Akou, A.

C. Bartual-Murgui, L. Salmon, A. Akou, G. Molnar, T. Mahfoud, A. Bousseksou, C. Thibault, Z. Sekkat, and J. A. Real, “High quality nano-patterned thin films of the coordination compound {Fe(pyrazine)[Pt(CN)2]} deposited layer-by-layer,” New J. Chem. 35, 2089–2094 (2011).
[CrossRef]

Awazu, K.

M. Fujimaki and K. Awazu, “Development of high-sensitivity molecular adsorption detection sensors,” Synthesiology 2, 142–153 (2009).
[CrossRef]

Bartual-Murgui, C.

C. Bartual-Murgui, L. Salmon, A. Akou, G. Molnar, T. Mahfoud, A. Bousseksou, C. Thibault, Z. Sekkat, and J. A. Real, “High quality nano-patterned thin films of the coordination compound {Fe(pyrazine)[Pt(CN)2]} deposited layer-by-layer,” New J. Chem. 35, 2089–2094 (2011).
[CrossRef]

Bousseksou, A.

C. Bartual-Murgui, L. Salmon, A. Akou, G. Molnar, T. Mahfoud, A. Bousseksou, C. Thibault, Z. Sekkat, and J. A. Real, “High quality nano-patterned thin films of the coordination compound {Fe(pyrazine)[Pt(CN)2]} deposited layer-by-layer,” New J. Chem. 35, 2089–2094 (2011).
[CrossRef]

Davis, T.

T. Davis and W. Wilson, “Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data,” Anal. Biochem. 284, 348–353 (2000).
[CrossRef]

Elkind, J.

K. Kukanskis, J. Elkind, J. Melendez, T. Murphy, G. Miller, and H. Garner, “Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor,” Anal. Biochem. 274, 7–17 (1999).
[CrossRef]

Feller, B. E.

Fujimaki, M.

M. Fujimaki and K. Awazu, “Development of high-sensitivity molecular adsorption detection sensors,” Synthesiology 2, 142–153 (2009).
[CrossRef]

Garner, H.

K. Kukanskis, J. Elkind, J. Melendez, T. Murphy, G. Miller, and H. Garner, “Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor,” Anal. Biochem. 274, 7–17 (1999).
[CrossRef]

Geerts, Y.

Z. Sekkat, J. Wood, Y. Geerts, and W. Knoll, “Surface plasmon investigations of light-induced modulation in the optical thickness of molecularly thin photochromic layers,” Langmuir 12, 2976–2980 (1996).
[CrossRef]

Goddard, N. J.

N. J. Goddard, D. Pollard-Knight, and C. H. Maule, “Real-time biomolecular interaction analysis using the resonant mirror sensor,” Analyst 119, 583–588 (1994).
[CrossRef]

Higo, M.

M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A 125, 296–303 (2006).
[CrossRef]

Hobbs, P. C.

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: Approaching their limits?,” Opt. Express 17, 16505–16517 (2009).
[CrossRef]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[CrossRef]

J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).

Hu, C.

C. Hu and D. Liu, “High-performance grating coupled surface plasmon resonance sensor based on Al–Au bimetallic layer,” Mod. Appl. Sci. 4, 8–13 (2010).

Jefferson, M.

Jha, R.

Knoesen, A.

Knoll, W.

Z. Sekkat, J. Wood, Y. Geerts, and W. Knoll, “Surface plasmon investigations of light-induced modulation in the optical thickness of molecularly thin photochromic layers,” Langmuir 12, 2976–2980 (1996).
[CrossRef]

Kretschmann, E.

E. Kretschmann, “Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).
[CrossRef]

Kukanskis, K.

K. Kukanskis, J. Elkind, J. Melendez, T. Murphy, G. Miller, and H. Garner, “Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor,” Anal. Biochem. 274, 7–17 (1999).
[CrossRef]

Li, L.

Lindquist, N. C.

P. Nagpal, D. J. Norris, N. C. Lindquist, and S. H. Oh, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef]

Liu, D.

C. Hu and D. Liu, “High-performance grating coupled surface plasmon resonance sensor based on Al–Au bimetallic layer,” Mod. Appl. Sci. 4, 8–13 (2010).

Mahfoud, T.

C. Bartual-Murgui, L. Salmon, A. Akou, G. Molnar, T. Mahfoud, A. Bousseksou, C. Thibault, Z. Sekkat, and J. A. Real, “High quality nano-patterned thin films of the coordination compound {Fe(pyrazine)[Pt(CN)2]} deposited layer-by-layer,” New J. Chem. 35, 2089–2094 (2011).
[CrossRef]

Maule, C. H.

N. J. Goddard, D. Pollard-Knight, and C. H. Maule, “Real-time biomolecular interaction analysis using the resonant mirror sensor,” Analyst 119, 583–588 (1994).
[CrossRef]

Melendez, J.

K. Kukanskis, J. Elkind, J. Melendez, T. Murphy, G. Miller, and H. Garner, “Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor,” Anal. Biochem. 274, 7–17 (1999).
[CrossRef]

Miller, G.

K. Kukanskis, J. Elkind, J. Melendez, T. Murphy, G. Miller, and H. Garner, “Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor,” Anal. Biochem. 274, 7–17 (1999).
[CrossRef]

Miller, R. D.

Mitsushio, M.

M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A 125, 296–303 (2006).
[CrossRef]

Miyashita, K.

M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A 125, 296–303 (2006).
[CrossRef]

Molnar, G.

C. Bartual-Murgui, L. Salmon, A. Akou, G. Molnar, T. Mahfoud, A. Bousseksou, C. Thibault, Z. Sekkat, and J. A. Real, “High quality nano-patterned thin films of the coordination compound {Fe(pyrazine)[Pt(CN)2]} deposited layer-by-layer,” New J. Chem. 35, 2089–2094 (2011).
[CrossRef]

Murphy, T.

K. Kukanskis, J. Elkind, J. Melendez, T. Murphy, G. Miller, and H. Garner, “Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor,” Anal. Biochem. 274, 7–17 (1999).
[CrossRef]

Nagpal, P.

P. Nagpal, D. J. Norris, N. C. Lindquist, and S. H. Oh, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef]

Nesterenko, D. V.

D. V. Nesterenko, “Modeling of diffraction of electromagnetic waves on periodic inhomogeneities by a finite element method coupled with the Rayleigh expansion,” Optoelectron. Instrum. Data Process. 47, 68–75 (2011).
[CrossRef]

Ng, H. M.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators 114, 1028–1034 (2006).
[CrossRef]

Norris, D. J.

P. Nagpal, D. J. Norris, N. C. Lindquist, and S. H. Oh, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef]

Oh, S. H.

P. Nagpal, D. J. Norris, N. C. Lindquist, and S. H. Oh, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef]

Ong, B. H.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators 114, 1028–1034 (2006).
[CrossRef]

Piliarik, M.

Pollard-Knight, D.

N. J. Goddard, D. Pollard-Knight, and C. H. Maule, “Real-time biomolecular interaction analysis using the resonant mirror sensor,” Analyst 119, 583–588 (1994).
[CrossRef]

Real, J. A.

C. Bartual-Murgui, L. Salmon, A. Akou, G. Molnar, T. Mahfoud, A. Bousseksou, C. Thibault, Z. Sekkat, and J. A. Real, “High quality nano-patterned thin films of the coordination compound {Fe(pyrazine)[Pt(CN)2]} deposited layer-by-layer,” New J. Chem. 35, 2089–2094 (2011).
[CrossRef]

Risk, W. P.

Salmon, L.

C. Bartual-Murgui, L. Salmon, A. Akou, G. Molnar, T. Mahfoud, A. Bousseksou, C. Thibault, Z. Sekkat, and J. A. Real, “High quality nano-patterned thin films of the coordination compound {Fe(pyrazine)[Pt(CN)2]} deposited layer-by-layer,” New J. Chem. 35, 2089–2094 (2011).
[CrossRef]

Sekkat, Z.

C. Bartual-Murgui, L. Salmon, A. Akou, G. Molnar, T. Mahfoud, A. Bousseksou, C. Thibault, Z. Sekkat, and J. A. Real, “High quality nano-patterned thin films of the coordination compound {Fe(pyrazine)[Pt(CN)2]} deposited layer-by-layer,” New J. Chem. 35, 2089–2094 (2011).
[CrossRef]

Z. Sekkat, J. Wood, Y. Geerts, and W. Knoll, “Surface plasmon investigations of light-induced modulation in the optical thickness of molecularly thin photochromic layers,” Langmuir 12, 2976–2980 (1996).
[CrossRef]

Sharma, A. K.

Thibault, C.

C. Bartual-Murgui, L. Salmon, A. Akou, G. Molnar, T. Mahfoud, A. Bousseksou, C. Thibault, Z. Sekkat, and J. A. Real, “High quality nano-patterned thin films of the coordination compound {Fe(pyrazine)[Pt(CN)2]} deposited layer-by-layer,” New J. Chem. 35, 2089–2094 (2011).
[CrossRef]

Tjin, S. C.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators 114, 1028–1034 (2006).
[CrossRef]

Wang, X.

Wilson, W.

T. Davis and W. Wilson, “Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data,” Anal. Biochem. 284, 348–353 (2000).
[CrossRef]

Wood, J.

Z. Sekkat, J. Wood, Y. Geerts, and W. Knoll, “Surface plasmon investigations of light-induced modulation in the optical thickness of molecularly thin photochromic layers,” Langmuir 12, 2976–2980 (1996).
[CrossRef]

Yuan, X.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators 114, 1028–1034 (2006).
[CrossRef]

Zhang, J.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators 114, 1028–1034 (2006).
[CrossRef]

Anal. Biochem. (2)

K. Kukanskis, J. Elkind, J. Melendez, T. Murphy, G. Miller, and H. Garner, “Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor,” Anal. Biochem. 274, 7–17 (1999).
[CrossRef]

T. Davis and W. Wilson, “Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data,” Anal. Biochem. 284, 348–353 (2000).
[CrossRef]

Analyst (1)

N. J. Goddard, D. Pollard-Knight, and C. H. Maule, “Real-time biomolecular interaction analysis using the resonant mirror sensor,” Analyst 119, 583–588 (1994).
[CrossRef]

Appl. Opt. (1)

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

Langmuir (1)

Z. Sekkat, J. Wood, Y. Geerts, and W. Knoll, “Surface plasmon investigations of light-induced modulation in the optical thickness of molecularly thin photochromic layers,” Langmuir 12, 2976–2980 (1996).
[CrossRef]

Mod. Appl. Sci. (1)

C. Hu and D. Liu, “High-performance grating coupled surface plasmon resonance sensor based on Al–Au bimetallic layer,” Mod. Appl. Sci. 4, 8–13 (2010).

New J. Chem. (1)

C. Bartual-Murgui, L. Salmon, A. Akou, G. Molnar, T. Mahfoud, A. Bousseksou, C. Thibault, Z. Sekkat, and J. A. Real, “High quality nano-patterned thin films of the coordination compound {Fe(pyrazine)[Pt(CN)2]} deposited layer-by-layer,” New J. Chem. 35, 2089–2094 (2011).
[CrossRef]

Opt. Commun. (1)

E. Kretschmann, “Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Optoelectron. Instrum. Data Process. (1)

D. V. Nesterenko, “Modeling of diffraction of electromagnetic waves on periodic inhomogeneities by a finite element method coupled with the Rayleigh expansion,” Optoelectron. Instrum. Data Process. 47, 68–75 (2011).
[CrossRef]

Science (1)

P. Nagpal, D. J. Norris, N. C. Lindquist, and S. H. Oh, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009).
[CrossRef]

Sens. Actuators (1)

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators 114, 1028–1034 (2006).
[CrossRef]

Sens. Actuators A (1)

M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al,” Sens. Actuators A 125, 296–303 (2006).
[CrossRef]

Synthesiology (1)

M. Fujimaki and K. Awazu, “Development of high-sensitivity molecular adsorption detection sensors,” Synthesiology 2, 142–153 (2009).
[CrossRef]

Other (6)

E. D. Palik, ed., Handbook of Optical Constants of Solids(Academic Press, 1985).

M. Born and E. Wolf, eds., Principles of Optics (Pergamon, 1999).

M. V. Klein and T. E. Furtak, eds., Optics (Wiley, 1986), p. 295.

J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).

R. B. M. Schasfoort and A. J. Tudos, eds., Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, 2008).

J. Homola and J. Dostálek, eds., Surface Plasmon Resonance Based Sensors (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic geometry of the bimetallic SPR sensor for bulk sensing and (b) SPR biosensor for adsorption layer sensing.

Fig. 2.
Fig. 2.

FOMSM and SImax of Au, Ag, Cu, Al single layer SPR sensors for bulk sensing dependences on thicknesses of metallic layers at 405 nm, 532 nm, 633 nm, 830 nm wavelengths.

Fig. 3.
Fig. 3.

FOMSM and SImax of Ag–Au, Cu–Au, and Al–Au bimetallic SPR sensor for bulk sensing dependence on thicknesses of metallic layers coated by 10 nm Au layer at 405 nm, 532 nm, 633 nm, 830 nm wavelengths.

Fig. 4.
Fig. 4.

FOMal and ΔImaxal of Au, Ag, Cu, Al single layer SPR sensors for thin layer sensing dependences on thicknesses of metallic layers at 405 nm, 532 nm, 633 nm, 830 nm wavelengths.

Fig. 5.
Fig. 5.

FOMal and ΔImaxal of Ag–Au, Cu–Au, and Al–Au bimetallic SPR sensor for thin layer sensing dependence on thicknesses of metallic layers coated by 10 nm Au layer at 405 nm, 532 nm, 633 nm, 830 nm wavelengths.

Fig. 6.
Fig. 6.

SPR curves for the sensors based on a single Ag and Au layer with (a) maximal FOMal: 48 nm Ag layer at 532 nm wavelength, 52 nm Au layer at 633 nm, and bimetallic Ag (40 nm) and Au (10 nm) at 633 nm and (b) ΔImaxal: 48 nm Ag layer, 53 nm Au layer, and bimetallic Ag (44 nm) and Au (10 nm) at 830 nm with (solid line) and without (dashed lines) adsorption layer.

Tables (1)

Tables Icon

Table 1. Refractive Index of Materials Depending on Wavelength

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

rI(y)=σISI(y),
SI(θ,λ)=I(θ,λ)ns,
rImin1SImax.
ry=σySy,
Sy=yresns,
σy=KσthN·wthdth,
ry=σthK1SyNwthdth.
N=wthΔφ.
ry=σthKwthSydthΔφ.
FOMSM=Sydthwth.
ΔIal=Ial(θ,λ)I(θ,λ),
FOMSM=Sydthwth,

Metrics