Abstract

Shifting of the surface plasmon resonance wavelength induced by the variation of the thickness of insulating spacer between single layer graphene and Au nanoparticles is studied. The system demonstrates a blue-shift of 29 nm as the thickness of the spacer layer increases from 0 to 15 nm. This is due to the electromagnetic coupling between the localized surface plasmons excited in the nanoparticles and the graphene film. The strength of the coupling decays exponentially with a decay length of d/R = 0.36, where d is the spacer layer thickness and R is the diameter of the Au nanoparticles. The result agrees qualitatively well with the plasmon ruler equation. Interestingly, a further increment of the spacer layer thickness induces a red-shift of 17 nm in the resonance wavelength and the shift saturates when the thickness of the spacer layer increases above 20 nm.

© 2012 OSA

1. Introduction

Since graphene was first exfoliated from highly-oriented pyrolytic graphite in 2004, it has attracted enormous research interest because of its exceptional properties [1, 2].Especially, it has demonstrated extraordinary electronic and thermal transport features as a promising material in the future nanoelectronics [35]. Its low opacity of ~2.3% over a wide frequency range, exceptional mechanical flexibility, and high electron mobility makes it an ideal material as transparent conductive electrodes [69]. Advances in large scale graphene synthesis methods enable the utilization of graphene as transparent conductive electrodes to successfully construct touch-screen panels and dye-sensitized solar cells [6, 10]. The true potential of graphene lies in photonics and optoelectronics [11]. Other demonstrated optoelectronic graphene devices include ultrafast lasers and broadband polarizers [12, 13]. In addition, taking advantage of the zero bandgap, short carrier lifetime, and high carrier mobility a graphene based photodetector in high speed communication links has been proposed [14]. One of the major drawbacks in the implementation of graphene optoelectronic devices is the low photocurrent generated by a single layer graphene sheet. In order to overcome this issue, metal nanoparticles were included in the system to enhance the photocurrent, and specific wavelength detection can be achieved by varying the structure of the metal nanoparticles simultaneously [15]. However, the presence of graphene near the metal nanoparticles consequently modifies the physical environment of the localized surface plasmon resonance (LSPR) excited in metal nanoparticles [16, 17]. Previously, a gold thin film was utilized with metal nanoparticles to achieve the tuning of the wavelength of LSPR by changing the distance between metal nanoparticles and the conductive film, which in turn varies the coupling strength of the electromagnetic field surrounding the particles and the conductive film [18].

In this work, we have investigated the coupling of the electromagnetic field between surface plasmons excited in gold nanoparticles and the anti-parallel image dipoles formed in graphene. The coupling strength of the field is controlled by inserting different thicknesses of an Al2O3 spacer layer between nanoparticles and graphene. As the spacer thickness increases from 0 to 15 nm, a blue-shift of the surface plasmon resonance from 599 to 570 nm is observed. This can be explained by the reduction of the coupling strength of the electromagnetic field of the excited plasmons in the nanoparticles and the anti-parallel image dipoles in graphene. The experimental results fit well with the plasmon ruler equation derived previously for the near-field electromagnetic field coupling [19]. The decay length is estimated to be 0.36. However, a further increment of the separation to 20 nm shifts the resonance wavelength back to a longer wavelength of 586 nm and the resonance wavelength saturates regardless of any further increment of the separation up to 35 nm. Our findings facilitate a better understanding of the electromagnetic coupling and provide an opportunity of wavelength selection in the graphene/spacer/nanoparticle system which could be utilized in multicolor selective optoelectronic devices.

2. Methods

Single layer graphene grown by chemical vapor deposition (CVD) on copper films is utilized in the experiment [6, 7]. The CVD graphene thin films are transferred to transparent borosilicate glass substrates for the transmission measurements. The quality of the graphene on borosilicate glass substrates is examined by Raman spectroscopy. As shown in Fig. 1(a) , the absence of the D peak and a sharp 2D peak illustrates high-quality single layer graphene [20]. The transmission data in Fig. 1(b) without and with graphene show a difference of ~2.3%, which matches well with the opacity of single layer graphene [8]. A layer of Al thin film less than 3 nm is deposited on top of the graphene samples by electron beam evaporation, followed by natural oxidation under ambient conditions. In order to ensure that the Al thin film is fully oxidized into Al2O3, the above steps are repeated for a thicker Al2O3 film. The thickness of the film is monitored through quartz crystals during the deposition, and estimated by an ellipsometer after the oxidation process. The Al2O3 film functions as the spacer layer between graphene and metal nanoparticles. Subsequently, a 1.5 nm Au film is deposited to form Au nanoparticles. The structure of the sample is illustrated in Fig. 1(c). The size of the nanoparticles is examined by scanning electron microscope (SEM) as shown in Fig. 1(d), and there is no observable difference in nanoparticles for various thicknesses of Al2O3. An image processing software, ImageJ is utilized to analyze the size of the nanoparticles. The average diameter of the spherical nanoparticles is ~10 nm with a standard deviation of 2.4 nm. The variation of the LSPR wavelength in Au nanoparticles is carried out through transmission measurements in an UV-visible spectrophotometer. An unpolarized light source is used to excite LSPR on Au nanoparticles and the incident light illuminates the sample perpendicularly. The excitation of LSPR on Au nanoparticles causes extinction of the transmitted light. Therefore, a dip is observed in the transmission spectrum at the resonance wavelength.

 

Fig. 1 (a) Raman spectrum of single layer CVD graphene with a 488 nm laser. (b) Transmission data of a borosilicate glass substrate without and with graphene. (c) Illustration of the sample structure (inset: cross section view of the device structure). (d) SEM image of Au nanoparticles formed on top of an Al2O3 spacer layer.

Download Full Size | PPT Slide | PDF

3. Results and discussion

Seven different Al2O3 films from 5 to 35 nm are deposited on bare glass substrates and graphene samples. The samples without graphene function as control samples. All samples have been processed together to minimize any experimental error due to fabrication condition changes. The transmission spectra of the samples have been measured right after the oxidation process. As shown in Fig. 2(a) , the transmission spectra remain flat through the measurement range for glass samples capped with different thicknesses of Al2O3. The transmission difference is less than 3% between samples capped with various thicknesses of the Al2O3 film. A similar result is observed for graphene samples as shown in Fig. 2(b) with slightly smaller transmission values due to graphene. After the formation of Au nanoparticles on the samples, the transmission spectra are measured again. Figure 2(c) shows the transmission spectra of samples without graphene. The presence of transmission dips and its position agrees well with the resonance wavelength of Au nanoparticles, indicating the excitation of LSPR [21]. A large red-shift of the resonance is observed, when a 5 nm Al2O3 layer is introduced between the glass substrate and the Au particles compared to the case when there is no Al2O3 in the structure. A further increment of the thickness of the Al2O3 layer from 5 to 35 nm induces a small red-shift (~9 nm) of the LSPR. The transmission spectra of graphene samples with various Al2O3 thicknesses are shown in Fig. 2(d). Unlike the samples without graphene, a blue-shift of 29 nm is observed, when the thickness of the spacer layer increases from 0 to 15 nm. A further increment of the thickness to 20 nm causes a red-shift of the resonance wavelength and no further shifting is observed regardless of the increment of the spacer layer thickness.

 

Fig. 2 (a) Transmission spectra of glass substrates capped with different thicknesses of Al2O3. (b) Transmission spectra from a structure of glass/graphene/Al2O3. (c) Transmission spectra from a structure of glass/Al2O3/particles. (d) Transmission spectra from a structure of glass/graphene/Al2O3/particles with various thicknesses of Al2O3. Each inset shows a cross section view of each sample structure.

Download Full Size | PPT Slide | PDF

Figure 3(a) shows the result of the theoretical calculation of the transmission value (1 − extinction efficiency) as a function of the separation between a gold nanosphere and a graphene substrate. The theoretical calculation is carried out based on dipole approximation, which is a common model to study the effect of a conductive film to the LSPR of metal nanoparticles [22]. The structure utilized in the calculation is shown in the inset of Fig. 3(a), in which a gold nanosphere is placed above a graphene substrate with a separation of d. The dielectric constant of graphene is calculated assuming that the optical response of a single graphene layer is given by the optical sheet conductivity, and the dielectric constant of gold is from the literatures [23, 24]. The calculated resonance wavelength as a function of the spacer layer thickness is shown in Fig. 3(b) as a blue line. A blue-shift of the resonance wavelength is clear for thinner insulating layers (0 to 10 nm), however, the resonance wavelength saturates when the thickness increases beyond 10 nm. This model correctly explains the observed blue-shift, but does not describe the subsequent red-shift nor does the model predict the correct resonance wavelength. Such deficiencies are presumably due to the assumptions of the model. For example, only one nanosphere is included in the calculation instead of many nanospheres. It has been observed that when nanoparticles are in close proximity, the coupling of the surface plasmon modes of nanoparticles will cause a red-shift of the resonance wavelength [2528].

 

Fig. 3 (a) Calculation results of the LSPR wavelength excited by parallel electric fields (inset: structure used for calculation). (b) Dependence of the resonance wavelength on the spacer layer thickness for samples without and with graphene. (c) Fitting of experimental data with the plasmon ruler equation. (d) Raman spectra of samples after deposition processes.

Download Full Size | PPT Slide | PDF

The experimental and calculation results of the resonance wavelength as a function of the spacer layer thickness are summarized in Fig. 3(b). A different trend in the shifting of LSPR without and with graphene is obvious. For samples without graphene, a red shift of the LSPR can be explained by an increment of the relative permittivity of the physical environment, since the relative permittivity of Al2O3 is higher than that of glass and air [29, 30]. For samples with graphene, a blue-shift can be accounted for by the coupling of the electromagnetic field between the particles and the conducting film [22, 31]. When LSPR is excited in the nanoparticles, an anti-parallel image dipole of the resonance is induced in the metal film. A stronger electromagnetic coupling between the nanoparticles and the metal film causes a longer resonance wavelength. As the separation increases from 0 to 15 nm, the coupling strength reduces resulting in a blue-shift in the resonance wavelength. A fit of our experimental data for spacer layer thickness from 0 to 15 nm using an exponential equation is shown in Fig. 3(c). The plasmon ruler equation is given by Δλ/λ0=a×exp(x/τ)+y0, where a, τ(decay length), and y0are the fitting parameters. λ0 is the shortest resonance wavelength, Δλ equals to the shifted wavelength compared to λ0, x is given by the spacer layer thickness (d) over the diameter of nanoparticles (R) [19, 32]. The equation is initially proposed for the particle-particle system to study the plasmon coupling in nanoparticles pairs, and has been also used for particle-substrate system, since the image dipole in the substrate/metal film can be regarded as the actual charge in the other particle [32]. The fitting of our experimental data shows a decay length of 0.36, which agrees well with the decay length (0.3) of the particle-substrate system reported previously [32].

A further increment of the distance between nanoparticles and graphene above 15 nm induces a red-shift and then a saturation of the resonance wavelength. The result is different from the previous studies of the two particles system and particle-substrate system, in which only blue-shift is observed with increasing of the spacer layer thickness [19, 32]. However, a similar effect has been reported for a silver nanoparticle and gold thin film system [18]. The blue-shift can be explained by the weakening of the coupling strength of the electromagnetic field as the distance between the particles and graphene increases. The reason of a red-shifting phenomenon could be very complicated, since for an intermediate spacer layer thickness, both the polarizability of the spacer layer and the charge response in the graphene film affect the LSPR of the metal nanoparticles [18]. In our theoretical model, the polarizability of the spacer layer is not considered. For large values of d the resonance wavelength is expected to saturate to the value of the system without graphene. As shown in Fig. 3(b), the resonance wavelength without and with graphene converges to a similar value for very thick spacer layers.

Raman spectra of the graphene samples after the deposition processes are measured as shown in Fig. 3(d) to evaluate the quality of graphene. For graphene capped with different thicknesses Al2O3, the spectra do not show any noticeable difference [16]. For a direct deposition of Au on top of graphene, a slightly smaller G to D peak ratio is observed. This is reasonable since the evaporation of Au is performed at a higher temperature compared to the case of Al. Although a D peak is present in the spectra, the G and 2D peaks are well preserved, demonstrating that the structural integrity of the graphene film is retained. The in-plane correlation length is ~4.3 nm and ~4.1 nm for graphene capped with and without spacer layer, respectively [33]. The in-plane correlation length is much larger than the conductivity lost limit of graphene [34, 35]. Therefore, graphene can still function well as a conductive layer.

4. Conclusion

In conclusion, by adjusting the thickness of the insulating spacer layer between Au nanoparticles and a single layer graphene thin film, the wavelength of LSPR can be tuned. As the separation between Au nanoparticles and graphene increases from 0 to 15 nm, the resonance wavelength has a blue-shift of approximately 29 nm. A further increment of the distance between these two parties causes a red-shift of the resonance, and the shifting saturates when the distance is more than 20 nm. The complex shifting behavior of the resonance wavelength can be understood by the electromagnetic coupling between graphene and particles, the relative permittivity of the surrounding media, and the polarizability of the spacer layer. Our study facilitates a comprehensive experimental study of the electromagnetic coupling of LSPR excited in Au nanoparticles and graphene. In addition, our finding suggests a straightforward and effective way of achieving multicolor selection in graphene/nanoparticles optoelectronic devices.

Acknowledgments

This work was supported by the Singapore National Research Foundation under CRP Award No. NRF-CRP 4-2008-06 and the National Research Foundation of Korea (2011-0006268).

References and links

1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef]   [PubMed]  

2. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009). [CrossRef]  

3. Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon,” Nature 472(7341), 74–78 (2011). [CrossRef]   [PubMed]  

4. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008). [CrossRef]   [PubMed]  

5. P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010). [CrossRef]   [PubMed]  

6. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010). [CrossRef]   [PubMed]  

7. Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10(2), 490–493 (2010). [CrossRef]   [PubMed]  

8. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881) (2008). [CrossRef]   [PubMed]  

9. Y. J. Shin, R. Stromberg, R. Nay, H. Huang, A. T. S. Wee, H. Yang, and C. S. Bhatia, “Frictional characteristics of exfoliated and epitaxial graphene,” Carbon 49(12), 4070–4073 (2011). [CrossRef]  

10. X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008). [CrossRef]   [PubMed]  

11. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]  

12. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010). [CrossRef]   [PubMed]  

13. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011). [CrossRef]  

14. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010). [CrossRef]  

15. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579 (2011). [CrossRef]   [PubMed]  

16. J. Niu, Y. Jun Shin, Y. Lee, J.-H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett. 100(6), 061116 (2012). [CrossRef]  

17. J. Niu, V. G. Truong, H. Huang, S. Tripathy, C. Qiu, A. T. S. Wee, T. Yu, and H. Yang, “Study of electromagnetic enhancement for surface enhanced Raman spectroscopy of SiC graphene,” Appl. Phys. Lett. 100(19), 191601 (2012). [CrossRef]  

18. M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C 114(16), 7509–7514 (2010). [CrossRef]  

19. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007). [CrossRef]  

20. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006). [CrossRef]   [PubMed]  

21. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998). [CrossRef]  

22. T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B 107(38), 10321–10324 (2003). [CrossRef]  

23. G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton. 5(1), 051809 (2011). [CrossRef]  

24. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, 1998).

25. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007). [CrossRef]   [PubMed]  

26. L. Genzel and T. P. Martin, “Infrared absorption by surface phonons and surface plasmons in small crystals,” Surf. Sci. 34(1), 33–49 (1973). [CrossRef]  

27. T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near Infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B 106(28), 7005–7012 (2002). [CrossRef]  

28. A. N. Shipway, M. Lahav, R. Gabai, and I. Willner, “Investigations into the electrostatically induced aggregation of Au nanoparticles,” Langmuir 16(23), 8789–8795 (2000). [CrossRef]  

29. T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999). [CrossRef]  

30. S. Kawata, M. Ohtsu, and M. Irie, Near-field Optics and Surface Plasmon Polaritons (Springer, 2001).

31. S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett. 105(12), 127403 (2010). [CrossRef]   [PubMed]  

32. C. L. Du, Y. M. You, K. Johnson, H. L. Hu, X. J. Zhang, and Z. X. Shen, “Near-field coupling effect between individual Au nanospheres and their supporting SiO2/Si substrate,” Plasmonics 5(2), 105–109 (2010). [CrossRef]  

33. F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys. 53(3), 1126–1130 (1970). [CrossRef]  

34. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000). [CrossRef]  

35. D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology 20(37), 375703 (2009). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
    [CrossRef] [PubMed]
  2. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).
    [CrossRef]
  3. Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon,” Nature472(7341), 74–78 (2011).
    [CrossRef] [PubMed]
  4. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
    [CrossRef] [PubMed]
  5. P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett.10(11), 4285–4294 (2010).
    [CrossRef] [PubMed]
  6. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
    [CrossRef] [PubMed]
  7. Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
    [CrossRef] [PubMed]
  8. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881) (2008).
    [CrossRef] [PubMed]
  9. Y. J. Shin, R. Stromberg, R. Nay, H. Huang, A. T. S. Wee, H. Yang, and C. S. Bhatia, “Frictional characteristics of exfoliated and epitaxial graphene,” Carbon49(12), 4070–4073 (2011).
    [CrossRef]
  10. X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8(1), 323–327 (2008).
    [CrossRef] [PubMed]
  11. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
    [CrossRef]
  12. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
    [CrossRef] [PubMed]
  13. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
    [CrossRef]
  14. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010).
    [CrossRef]
  15. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.2, 579 (2011).
    [CrossRef] [PubMed]
  16. J. Niu, Y. Jun Shin, Y. Lee, J.-H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012).
    [CrossRef]
  17. J. Niu, V. G. Truong, H. Huang, S. Tripathy, C. Qiu, A. T. S. Wee, T. Yu, and H. Yang, “Study of electromagnetic enhancement for surface enhanced Raman spectroscopy of SiC graphene,” Appl. Phys. Lett.100(19), 191601 (2012).
    [CrossRef]
  18. M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C114(16), 7509–7514 (2010).
    [CrossRef]
  19. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
    [CrossRef]
  20. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
    [CrossRef] [PubMed]
  21. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
    [CrossRef]
  22. T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B107(38), 10321–10324 (2003).
    [CrossRef]
  23. G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
    [CrossRef]
  24. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, 1998).
  25. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev.107(11), 4797–4862 (2007).
    [CrossRef] [PubMed]
  26. L. Genzel and T. P. Martin, “Infrared absorption by surface phonons and surface plasmons in small crystals,” Surf. Sci.34(1), 33–49 (1973).
    [CrossRef]
  27. T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near Infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B106(28), 7005–7012 (2002).
    [CrossRef]
  28. A. N. Shipway, M. Lahav, R. Gabai, and I. Willner, “Investigations into the electrostatically induced aggregation of Au nanoparticles,” Langmuir16(23), 8789–8795 (2000).
    [CrossRef]
  29. T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
    [CrossRef]
  30. S. Kawata, M. Ohtsu, and M. Irie, Near-field Optics and Surface Plasmon Polaritons (Springer, 2001).
  31. S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010).
    [CrossRef] [PubMed]
  32. C. L. Du, Y. M. You, K. Johnson, H. L. Hu, X. J. Zhang, and Z. X. Shen, “Near-field coupling effect between individual Au nanospheres and their supporting SiO2/Si substrate,” Plasmonics5(2), 105–109 (2010).
    [CrossRef]
  33. F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys.53(3), 1126–1130 (1970).
    [CrossRef]
  34. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000).
    [CrossRef]
  35. D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology20(37), 375703 (2009).
    [CrossRef] [PubMed]

2012 (2)

J. Niu, Y. Jun Shin, Y. Lee, J.-H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012).
[CrossRef]

J. Niu, V. G. Truong, H. Huang, S. Tripathy, C. Qiu, A. T. S. Wee, T. Yu, and H. Yang, “Study of electromagnetic enhancement for surface enhanced Raman spectroscopy of SiC graphene,” Appl. Phys. Lett.100(19), 191601 (2012).
[CrossRef]

2011 (5)

Y. J. Shin, R. Stromberg, R. Nay, H. Huang, A. T. S. Wee, H. Yang, and C. S. Bhatia, “Frictional characteristics of exfoliated and epitaxial graphene,” Carbon49(12), 4070–4073 (2011).
[CrossRef]

Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon,” Nature472(7341), 74–78 (2011).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.2, 579 (2011).
[CrossRef] [PubMed]

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

2010 (9)

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010).
[CrossRef]

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010).
[CrossRef] [PubMed]

C. L. Du, Y. M. You, K. Johnson, H. L. Hu, X. J. Zhang, and Z. X. Shen, “Near-field coupling effect between individual Au nanospheres and their supporting SiO2/Si substrate,” Plasmonics5(2), 105–109 (2010).
[CrossRef]

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett.10(11), 4285–4294 (2010).
[CrossRef] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C114(16), 7509–7514 (2010).
[CrossRef]

2009 (2)

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).
[CrossRef]

D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology20(37), 375703 (2009).
[CrossRef] [PubMed]

2008 (3)

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881) (2008).
[CrossRef] [PubMed]

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8(1), 323–327 (2008).
[CrossRef] [PubMed]

2007 (2)

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev.107(11), 4797–4862 (2007).
[CrossRef] [PubMed]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

2003 (1)

T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B107(38), 10321–10324 (2003).
[CrossRef]

2002 (1)

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near Infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B106(28), 7005–7012 (2002).
[CrossRef]

2000 (2)

A. N. Shipway, M. Lahav, R. Gabai, and I. Willner, “Investigations into the electrostatically induced aggregation of Au nanoparticles,” Langmuir16(23), 8789–8795 (2000).
[CrossRef]

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000).
[CrossRef]

1999 (1)

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
[CrossRef]

1998 (1)

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
[CrossRef]

1973 (1)

L. Genzel and T. P. Martin, “Infrared absorption by surface phonons and surface plasmons in small crystals,” Surf. Sci.34(1), 33–49 (1973).
[CrossRef]

1970 (1)

F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys.53(3), 1126–1130 (1970).
[CrossRef]

Ahn, J.-H.

J. Niu, Y. Jun Shin, Y. Lee, J.-H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012).
[CrossRef]

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Ahn, K. J.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010).
[CrossRef] [PubMed]

Avouris, P.

Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon,” Nature472(7341), 74–78 (2011).
[CrossRef] [PubMed]

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett.10(11), 4285–4294 (2010).
[CrossRef] [PubMed]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010).
[CrossRef]

Bae, S.

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Bai, J.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.2, 579 (2011).
[CrossRef] [PubMed]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Balandin, A. A.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Bao, W.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Bergmair, I.

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

Bhatia, C. S.

Y. J. Shin, R. Stromberg, R. Nay, H. Huang, A. T. S. Wee, H. Yang, and C. S. Bhatia, “Frictional characteristics of exfoliated and epitaxial graphene,” Carbon49(12), 4070–4073 (2011).
[CrossRef]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881) (2008).
[CrossRef] [PubMed]

Bol, A. A.

Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon,” Nature472(7341), 74–78 (2011).
[CrossRef] [PubMed]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881) (2008).
[CrossRef] [PubMed]

Bridges, F.

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near Infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B106(28), 7005–7012 (2002).
[CrossRef]

Bruno, G.

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

Calizo, I.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Cao, D.

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near Infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B106(28), 7005–7012 (2002).
[CrossRef]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Castro Neto, A. H.

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).
[CrossRef]

Cheng, R.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.2, 579 (2011).
[CrossRef] [PubMed]

Choi, S.-H.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010).
[CrossRef] [PubMed]

Chung, H.-J.

D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology20(37), 375703 (2009).
[CrossRef] [PubMed]

Du, C. L.

C. L. Du, Y. M. You, K. Johnson, H. L. Hu, X. J. Zhang, and Z. X. Shen, “Near-field coupling effect between individual Au nanospheres and their supporting SiO2/Si substrate,” Plasmonics5(2), 105–109 (2010).
[CrossRef]

Duan, X.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.2, 579 (2011).
[CrossRef] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Duval, M. L.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
[CrossRef]

El-Sayed, M. A.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

Farmer, D. B.

Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon,” Nature472(7341), 74–78 (2011).
[CrossRef] [PubMed]

Feldmann, J.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
[CrossRef]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000).
[CrossRef]

Filipovic, M.

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Gabai, R.

A. N. Shipway, M. Lahav, R. Gabai, and I. Willner, “Investigations into the electrostatically induced aggregation of Au nanoparticles,” Langmuir16(23), 8789–8795 (2000).
[CrossRef]

Gajic, R.

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

Geim, A. K.

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881) (2008).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Genzel, L.

L. Genzel and T. P. Martin, “Infrared absorption by surface phonons and surface plasmons in small crystals,” Surf. Sci.34(1), 33–49 (1973).
[CrossRef]

Ghosh, S.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Ghosh, S. K.

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev.107(11), 4797–4862 (2007).
[CrossRef] [PubMed]

Ghoshal, A.

M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C114(16), 7509–7514 (2010).
[CrossRef]

Grant, C. D.

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near Infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B106(28), 7005–7012 (2002).
[CrossRef]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881) (2008).
[CrossRef] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
[CrossRef]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Hingerl, K.

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

Hong, B. H.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010).
[CrossRef] [PubMed]

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Hong, S. H.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010).
[CrossRef] [PubMed]

Hu, H. L.

C. L. Du, Y. M. You, K. Johnson, H. L. Hu, X. J. Zhang, and Z. X. Shen, “Near-field coupling effect between individual Au nanospheres and their supporting SiO2/Si substrate,” Plasmonics5(2), 105–109 (2010).
[CrossRef]

Hu, M.

M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C114(16), 7509–7514 (2010).
[CrossRef]

Huang, H.

J. Niu, V. G. Truong, H. Huang, S. Tripathy, C. Qiu, A. T. S. Wee, T. Yu, and H. Yang, “Study of electromagnetic enhancement for surface enhanced Raman spectroscopy of SiC graphene,” Appl. Phys. Lett.100(19), 191601 (2012).
[CrossRef]

Y. J. Shin, R. Stromberg, R. Nay, H. Huang, A. T. S. Wee, H. Yang, and C. S. Bhatia, “Frictional characteristics of exfoliated and epitaxial graphene,” Carbon49(12), 4070–4073 (2011).
[CrossRef]

Huang, W.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

Huang, Y.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.2, 579 (2011).
[CrossRef] [PubMed]

Humlicek, J.

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

Hwang, S. W.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010).
[CrossRef] [PubMed]

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Isic, G.

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

Jain, P. K.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

Jakovljevic, M.

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

Jang, H.

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

Jang, S.

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

Jenkins, K. A.

Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon,” Nature472(7341), 74–78 (2011).
[CrossRef] [PubMed]

Jensen, T. R.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
[CrossRef]

Jeon, D.-Y.

D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology20(37), 375703 (2009).
[CrossRef] [PubMed]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Johnson, K.

C. L. Du, Y. M. You, K. Johnson, H. L. Hu, X. J. Zhang, and Z. X. Shen, “Near-field coupling effect between individual Au nanospheres and their supporting SiO2/Si substrate,” Plasmonics5(2), 105–109 (2010).
[CrossRef]

Jovanovic, D.

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

Jun Shin, Y.

J. Niu, Y. Jun Shin, Y. Lee, J.-H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012).
[CrossRef]

Kelly, K. L.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
[CrossRef]

Kik, P. G.

M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C114(16), 7509–7514 (2010).
[CrossRef]

Kim, C. O.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010).
[CrossRef] [PubMed]

Kim, D. C.

D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology20(37), 375703 (2009).
[CrossRef] [PubMed]

Kim, G.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010).
[CrossRef] [PubMed]

Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Kim, J.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010).
[CrossRef] [PubMed]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Kim, M. C.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010).
[CrossRef] [PubMed]

Kim, S.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010).
[CrossRef] [PubMed]

Kim, Y.-J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Klar, T.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
[CrossRef]

Koenig, J. L.

F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys.53(3), 1126–1130 (1970).
[CrossRef]

Kostic, R.

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

Lahav, M.

A. N. Shipway, M. Lahav, R. Gabai, and I. Willner, “Investigations into the electrostatically induced aggregation of Au nanoparticles,” Langmuir16(23), 8789–8795 (2000).
[CrossRef]

Lau, C. N.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Lazarides, A. A.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
[CrossRef]

Lazovic, S.

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Lee, Y.

J. Niu, Y. Jun Shin, Y. Lee, J.-H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012).
[CrossRef]

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Lei, T.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Liao, L.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.2, 579 (2011).
[CrossRef] [PubMed]

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Lim, K. Y.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010).
[CrossRef] [PubMed]

Lin, Y.-M.

Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon,” Nature472(7341), 74–78 (2011).
[CrossRef] [PubMed]

Liu, G.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.2, 579 (2011).
[CrossRef] [PubMed]

Liu, J.

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near Infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B106(28), 7005–7012 (2002).
[CrossRef]

Liu, L.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.2, 579 (2011).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.2, 579 (2011).
[CrossRef] [PubMed]

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Losurdo, M.

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

Magana, D.

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near Infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B106(28), 7005–7012 (2002).
[CrossRef]

Marquez, M.

M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C114(16), 7509–7514 (2010).
[CrossRef]

Martin, T. P.

L. Genzel and T. P. Martin, “Infrared absorption by surface phonons and surface plasmons in small crystals,” Surf. Sci.34(1), 33–49 (1973).
[CrossRef]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Miao, F.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Mueller, T.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010).
[CrossRef]

Müllen, K.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8(1), 323–327 (2008).
[CrossRef] [PubMed]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881) (2008).
[CrossRef] [PubMed]

Nay, R.

Y. J. Shin, R. Stromberg, R. Nay, H. Huang, A. T. S. Wee, H. Yang, and C. S. Bhatia, “Frictional characteristics of exfoliated and epitaxial graphene,” Carbon49(12), 4070–4073 (2011).
[CrossRef]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Niu, J.

J. Niu, Y. Jun Shin, Y. Lee, J.-H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012).
[CrossRef]

J. Niu, V. G. Truong, H. Huang, S. Tripathy, C. Qiu, A. T. S. Wee, T. Yu, and H. Yang, “Study of electromagnetic enhancement for surface enhanced Raman spectroscopy of SiC graphene,” Appl. Phys. Lett.100(19), 191601 (2012).
[CrossRef]

Norman, T. J.

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near Infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B106(28), 7005–7012 (2002).
[CrossRef]

Novoselov, K. S.

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881) (2008).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Okamoto, T.

T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B107(38), 10321–10324 (2003).
[CrossRef]

Özyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Pal, T.

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev.107(11), 4797–4862 (2007).
[CrossRef] [PubMed]

Park, J.-S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Peres, N. M. R.

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881) (2008).
[CrossRef] [PubMed]

Perner, M.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
[CrossRef]

Petrovic, Z. L.

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Puac, N.

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

Qiu, C.

J. Niu, V. G. Truong, H. Huang, S. Tripathy, C. Qiu, A. T. S. Wee, T. Yu, and H. Yang, “Study of electromagnetic enhancement for surface enhanced Raman spectroscopy of SiC graphene,” Appl. Phys. Lett.100(19), 191601 (2012).
[CrossRef]

Ri Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Robertson, J.

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000).
[CrossRef]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Schatz, G. C.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
[CrossRef]

Seo, S.

D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology20(37), 375703 (2009).
[CrossRef] [PubMed]

Shen, Z. X.

C. L. Du, Y. M. You, K. Johnson, H. L. Hu, X. J. Zhang, and Z. X. Shen, “Near-field coupling effect between individual Au nanospheres and their supporting SiO2/Si substrate,” Plasmonics5(2), 105–109 (2010).
[CrossRef]

Shin, D. H.

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010).
[CrossRef] [PubMed]

Shin, J. K.

D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology20(37), 375703 (2009).
[CrossRef] [PubMed]

Shin, Y. J.

Y. J. Shin, R. Stromberg, R. Nay, H. Huang, A. T. S. Wee, H. Yang, and C. S. Bhatia, “Frictional characteristics of exfoliated and epitaxial graphene,” Carbon49(12), 4070–4073 (2011).
[CrossRef]

Shipway, A. N.

A. N. Shipway, M. Lahav, R. Gabai, and I. Willner, “Investigations into the electrostatically induced aggregation of Au nanoparticles,” Langmuir16(23), 8789–8795 (2000).
[CrossRef]

Sim, S. H.

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010).
[CrossRef] [PubMed]

Song, Y. I.

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Spirkl, W.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
[CrossRef]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881) (2008).
[CrossRef] [PubMed]

Stromberg, R.

Y. J. Shin, R. Stromberg, R. Nay, H. Huang, A. T. S. Wee, H. Yang, and C. S. Bhatia, “Frictional characteristics of exfoliated and epitaxial graphene,” Carbon49(12), 4070–4073 (2011).
[CrossRef]

Sun, Z.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Tang, D. Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Teweldebrhan, D.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Tripathy, S.

J. Niu, V. G. Truong, H. Huang, S. Tripathy, C. Qiu, A. T. S. Wee, T. Yu, and H. Yang, “Study of electromagnetic enhancement for surface enhanced Raman spectroscopy of SiC graphene,” Appl. Phys. Lett.100(19), 191601 (2012).
[CrossRef]

Truong, V. G.

J. Niu, V. G. Truong, H. Huang, S. Tripathy, C. Qiu, A. T. S. Wee, T. Yu, and H. Yang, “Study of electromagnetic enhancement for surface enhanced Raman spectroscopy of SiC graphene,” Appl. Phys. Lett.100(19), 191601 (2012).
[CrossRef]

Tuinstra, F.

F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys.53(3), 1126–1130 (1970).
[CrossRef]

Van Buuren, A.

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near Infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B106(28), 7005–7012 (2002).
[CrossRef]

Van Duyne, R. P.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
[CrossRef]

Vasic, B.

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

von Plessen, G.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
[CrossRef]

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Wang, X.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8(1), 323–327 (2008).
[CrossRef] [PubMed]

Wang, Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Wee, A. T. S.

J. Niu, V. G. Truong, H. Huang, S. Tripathy, C. Qiu, A. T. S. Wee, T. Yu, and H. Yang, “Study of electromagnetic enhancement for surface enhanced Raman spectroscopy of SiC graphene,” Appl. Phys. Lett.100(19), 191601 (2012).
[CrossRef]

Y. J. Shin, R. Stromberg, R. Nay, H. Huang, A. T. S. Wee, H. Yang, and C. S. Bhatia, “Frictional characteristics of exfoliated and epitaxial graphene,” Carbon49(12), 4070–4073 (2011).
[CrossRef]

Willner, I.

A. N. Shipway, M. Lahav, R. Gabai, and I. Willner, “Investigations into the electrostatically induced aggregation of Au nanoparticles,” Langmuir16(23), 8789–8795 (2000).
[CrossRef]

Woo, Y.

D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology20(37), 375703 (2009).
[CrossRef] [PubMed]

Wu, Y.

Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon,” Nature472(7341), 74–78 (2011).
[CrossRef] [PubMed]

Xia, F.

Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon,” Nature472(7341), 74–78 (2011).
[CrossRef] [PubMed]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010).
[CrossRef]

Xu, X.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Yamaguchi, I.

T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B107(38), 10321–10324 (2003).
[CrossRef]

Yang, H.

J. Niu, Y. Jun Shin, Y. Lee, J.-H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012).
[CrossRef]

J. Niu, V. G. Truong, H. Huang, S. Tripathy, C. Qiu, A. T. S. Wee, T. Yu, and H. Yang, “Study of electromagnetic enhancement for surface enhanced Raman spectroscopy of SiC graphene,” Appl. Phys. Lett.100(19), 191601 (2012).
[CrossRef]

Y. J. Shin, R. Stromberg, R. Nay, H. Huang, A. T. S. Wee, H. Yang, and C. S. Bhatia, “Frictional characteristics of exfoliated and epitaxial graphene,” Carbon49(12), 4070–4073 (2011).
[CrossRef]

You, Y. M.

C. L. Du, Y. M. You, K. Johnson, H. L. Hu, X. J. Zhang, and Z. X. Shen, “Near-field coupling effect between individual Au nanospheres and their supporting SiO2/Si substrate,” Plasmonics5(2), 105–109 (2010).
[CrossRef]

Yu, T.

J. Niu, V. G. Truong, H. Huang, S. Tripathy, C. Qiu, A. T. S. Wee, T. Yu, and H. Yang, “Study of electromagnetic enhancement for surface enhanced Raman spectroscopy of SiC graphene,” Appl. Phys. Lett.100(19), 191601 (2012).
[CrossRef]

Zhang, H.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Zhang, J. Z.

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near Infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B106(28), 7005–7012 (2002).
[CrossRef]

Zhang, X. J.

C. L. Du, Y. M. You, K. Johnson, H. L. Hu, X. J. Zhang, and Z. X. Shen, “Near-field coupling effect between individual Au nanospheres and their supporting SiO2/Si substrate,” Plasmonics5(2), 105–109 (2010).
[CrossRef]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Zhi, L.

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8(1), 323–327 (2008).
[CrossRef] [PubMed]

Zhou, H.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.2, 579 (2011).
[CrossRef] [PubMed]

Zhu, S.-E.

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

Zhu, Y.

Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon,” Nature472(7341), 74–78 (2011).
[CrossRef] [PubMed]

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

J. Niu, Y. Jun Shin, Y. Lee, J.-H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012).
[CrossRef]

J. Niu, V. G. Truong, H. Huang, S. Tripathy, C. Qiu, A. T. S. Wee, T. Yu, and H. Yang, “Study of electromagnetic enhancement for surface enhanced Raman spectroscopy of SiC graphene,” Appl. Phys. Lett.100(19), 191601 (2012).
[CrossRef]

Carbon (1)

Y. J. Shin, R. Stromberg, R. Nay, H. Huang, A. T. S. Wee, H. Yang, and C. S. Bhatia, “Frictional characteristics of exfoliated and epitaxial graphene,” Carbon49(12), 4070–4073 (2011).
[CrossRef]

Chem. Rev. (1)

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev.107(11), 4797–4862 (2007).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys.53(3), 1126–1130 (1970).
[CrossRef]

J. Nanophoton. (1)

G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011).
[CrossRef]

J. Phys. Chem. B (3)

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near Infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B106(28), 7005–7012 (2002).
[CrossRef]

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
[CrossRef]

T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B107(38), 10321–10324 (2003).
[CrossRef]

J. Phys. Chem. C (1)

M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C114(16), 7509–7514 (2010).
[CrossRef]

Langmuir (1)

A. N. Shipway, M. Lahav, R. Gabai, and I. Willner, “Investigations into the electrostatically induced aggregation of Au nanoparticles,” Langmuir16(23), 8789–8795 (2000).
[CrossRef]

Nano Lett. (5)

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007).
[CrossRef]

X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8(1), 323–327 (2008).
[CrossRef] [PubMed]

Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010).
[CrossRef] [PubMed]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett.10(11), 4285–4294 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology20(37), 375703 (2009).
[CrossRef] [PubMed]

Nat. Commun. (1)

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.2, 579 (2011).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Nat. Photonics (3)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010).
[CrossRef]

Nature (1)

Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon,” Nature472(7341), 74–78 (2011).
[CrossRef] [PubMed]

Phys. Rev. B (1)

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000).
[CrossRef]

Phys. Rev. Lett. (3)

S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998).
[CrossRef]

Plasmonics (1)

C. L. Du, Y. M. You, K. Johnson, H. L. Hu, X. J. Zhang, and Z. X. Shen, “Near-field coupling effect between individual Au nanospheres and their supporting SiO2/Si substrate,” Plasmonics5(2), 105–109 (2010).
[CrossRef]

Rev. Mod. Phys. (1)

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).
[CrossRef]

Science (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004).
[CrossRef] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881) (2008).
[CrossRef] [PubMed]

Surf. Sci. (1)

L. Genzel and T. P. Martin, “Infrared absorption by surface phonons and surface plasmons in small crystals,” Surf. Sci.34(1), 33–49 (1973).
[CrossRef]

Other (2)

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, 1998).

S. Kawata, M. Ohtsu, and M. Irie, Near-field Optics and Surface Plasmon Polaritons (Springer, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Raman spectrum of single layer CVD graphene with a 488 nm laser. (b) Transmission data of a borosilicate glass substrate without and with graphene. (c) Illustration of the sample structure (inset: cross section view of the device structure). (d) SEM image of Au nanoparticles formed on top of an Al2O3 spacer layer.

Fig. 2
Fig. 2

(a) Transmission spectra of glass substrates capped with different thicknesses of Al2O3. (b) Transmission spectra from a structure of glass/graphene/Al2O3. (c) Transmission spectra from a structure of glass/Al2O3/particles. (d) Transmission spectra from a structure of glass/graphene/Al2O3/particles with various thicknesses of Al2O3. Each inset shows a cross section view of each sample structure.

Fig. 3
Fig. 3

(a) Calculation results of the LSPR wavelength excited by parallel electric fields (inset: structure used for calculation). (b) Dependence of the resonance wavelength on the spacer layer thickness for samples without and with graphene. (c) Fitting of experimental data with the plasmon ruler equation. (d) Raman spectra of samples after deposition processes.

Metrics