Abstract

We theoretically show that a weakly-focused radially polarized beam can excite surface-plasmon-polaritons in metal nanowires and nanocones with efficiencies of the order of 90% and large bandwidths. The coupling mechanism relies on the formation of a standing wave on the nanowire facet, which imposes a relationship between the operating wavelength and the nanowire radius. An immediate application of this finding is nanofocusing of optical energy for implementations of ultra-fast and high-throughput linear and nonlinear nanoscopies, optical nanolithographies, quantum nano-optics and photochemistry at the nanoscale.

© 2010 Optical Society of America

1. Introduction

Since its birth in the mid-1980s, scanning near-field optical microscopy (SNOM) has suffered from the small fraction of optical energy that can be concentrated near the tip apex. For high-resolution probes, this factor is at most of the order of 10-3 but usually much less, depending on the probe parameters [1]. Optical antennas can perform better, but their implementation in a scanning device is still restricted by difficulties associated with the high-throughput fabrication or attachment of a well-defined metal nanoparticle to the end of a tapered fiber [2, 3]. Furthermore, these probes exhibit a nearly-dipolar radiation pattern, which requires high numerical-aperture (NA) optics to obtain large coupling efficiencies [4].

An emerging approach to concentrate light into a subwavelength spot size relies on the so-called nanofocusing of surface plasmon-polaritons (SPPs) [5–7]. Nanofocusing could indeed revolutionize SNOM by largely improving fluorescence, Raman and other nonlinear nanoscopies [8–10]. Furthermore, the possibility of feeding optical energy into a nanoscale volume has also immediate implications for photochemistry [11], quantum optics [12] and nanolithography [13]. However, practical exploitations of this concept require a rapid and effective conversion of SPPs into photons, especially in the visible and UV spectral range, where absorption losses by real metals lead to very small propagation lengths.

We recently demonstrated that guided photons of a dielectric nanofiber are converted into SPPs in metal nanowires (NWs) and vice versa with close to 100% efficiency. Based on these findings, we suggested that a high-throughput SNOM could be realized by butt-coupling a metal cone with a tapered fiber [14]. Since SNOMs based on cantilevers are gaining interest due to their reliability and performances [15], it is relevant to know whether SPPs in metal nanocones attached to cantilevers can be efficiently excited by focused beams.

Several designs of cantilever-based SNOMs are found in the literature. For example, a Gaussian beam focused into an aperture SNOM [16] or a fully metal coated dielectric tip [17, 18], and an aperture probe combined with a microsphere [19]. Other schemes used a grating etched on the side of the nanocone [20] or a photonic-crystal cavity [21] to improve the coupling efficiency. On the other hand, the polarization and profile of TM0 SPPs suggest that a promising candidate for their efficient excitation in a nanofocusing device could be a focused radially-polarized beam (FRB) [22]. Indeed, radially-polarized light has already been applied to nanocones [23–26], but the conversion efficiency of photons into SPPs did not exhibit a large improvement in comparison to the other arrangements. Furthermore, when light is focused on to the tip apex it gives rise to a strong background illumination.

Here, we show that the conversion mechanism of our fiber-based high-throughput SNOM, namely the molding of SPPs at the cone base [14], holds also for free-space coupling. When a weakly-focused radially-polarized beam is incident on the nanocone base, the conversion of photons into SPPs can reach 90% efficiency. Moreover, since the tip apex is out of focus, background noise due to direct illumination is further suppressed [27].

2. Results and Discussion

The primary processes that we need to consider in a high-throughput SNOM are nanofocusing of SPPs and conversion of SPPs into photons. Since there exists much literature on nanofocusing [5–7, 28–32], we direct our attention only to the coupling between photons and SPPs in the collection and illumination modes. To this end, in Sec. 2.1 we first analyze the reflection and scattering of SPPs at the end of a metal NW [33,34] in the presence of a semi-infinite dielectric that accounts for the cantilever. In Sec. 2.2, we consider the far-field pattern and compare it to the field profile of FRBs. In Sec. 2.3, we study the conversion of photons into SPPs by illuminating the NW end with FRBs. Finally, in Sec. 2.4 we combine our findings with nanofocusing to assess field enhancement and spatial resolution.

2.1. Reflection and Directional Emission

We first considered the reflection and radiation properties of TM0 SPPs when they reach the end of a semi-infinite metal NW. In contrary to butt-coupling with a dielectric nanofiber [14] and free-space coupling [33, 34], here we placed a semi-infinite dielectric at the NW termination. Besides holding the NW, the substrate changes reflection and radiation of SPPs. Figure 1(a) sketches the situation for a gold [35] NW on a glass substrate (refractive index n=1.5) together with the simulation layout. Our calculations were carried out using the body-of-revolution (BOR) finite-difference time-domain (FDTD) method, whose details and advantages are briefly explained in the Appendix. Throughout this work we chose a working wavelength of λ = 633 nm, keeping in mind that these results are generally valid over a broad spectral range if the NW radius (r) is properly scaled [14, 34].

 

Fig. 1. (a) Layout of a semi-infinite gold NW in air on a glass substrate. The dashed lines delimit the computational domain of BOR-FDTD. (b) Reflection as a function of the NW radius for different metals and substrates. (c) and (d) Time-averaged magnetic field for a gold NW on glass (n = 1.5) with r = 160 nm and r = 340 nm, respectively. In (b)–(d) the vacuum wavelength is 633 nm. In (a), (c) and (d) the solid red lines indicate the source position.

Download Full Size | PPT Slide | PDF

A TM0 SPP is launched on the gold NW and when it reaches the NW end it can be reflected into the same SPP mode, into free space, and scattered in the forward direction. Figure 1(b) displays the amount of reflection back into the SPP as a function of the NW radius for different metals and substrates, showing that it is minimized for some values of r. Figures 1(c) and 1(d) plot the time-averaged magnetic field at two reflection minima corresponding to a gold NW on glass with respectively r = 160 nm and r = 340 nm. It turns out that the NW facet supports a standing wave [14], which leads to a directional radiation pattern with a profile determined by the field near the NW facet. There is no radiated power along the z-axis, a result that simply stems from the spatial symmetry and polarization of TM0 SPPs. Figure 1(b) also shows that when gold NWs are replaced by silver [35] NWs reflection and emission are almost the same.

We then investigated the effect of changing the dielectric substrate. For example, when the refractive index is set to n = 2, reflections increase and the minima shift towards shorter NW radii. This is a further indication that the standing wave on the NW facet plays an important role in lowering reflection, as we found for the case of butt-coupling with a dielectric nanofiber [14]. We have also considered the amount of reflection that is not channeled into SPPs and found that it can be negligible.

In summary, when SPPs reach the NW end they radiate in the forward direction with a very high efficiency if, for a given wavelength, the NW radius is appropriately chosen. Furthermore, the radius can be reduced by increasing the refractive index of the supporting substrate, but at the cost of increasing reflection.

2.2. Optimizing the Beam Parameters

Here we are interested in the conversion of focused beams into SPPs of metal NWs. Reciprocity tells us that if the out-coupling efficiency is high, the same holds for the opposite direction. However, one has to clarify what beam profile should be used to perform this task. We thus considered the near field obtained from the BOR-FDTD calculations and transformed it to the far field using an algorithm described in the Appendix. In the far region the field is a spherical transverse wave polarized along θ since the φ component must be zero by symmetry considerations.

In the spherical coordinates (r, θ, φ) we define a Gaussian reference sphere (GRS) to interface the NW with the optical focusing system, as sketched in Fig. 2(a). The polarization and spatial properties of the electric field on the GRS suggest that a good candidate for coupling optical energy in the NW would be a radially-polarized beam [22]. Its electric-field profile at the beam waist reads

E(ρ)=ρ̂Eoexp(ρ2/(2w2))ρ/w,

where Eo is the field amplitude, w the beam waist, ρ the radial coordinate, and ρ^ its unit vector. Fig. 2(a) depicts how this enters the optical system to reach the GRS with a transformed field

E(a,θ)=Eoexp(a2sin2θ/2)asinθcosθθ̂,

where a = f/w, θ^ is the unit vector, and √cosθ is the apodization function for an aplanatic system [36f is the lens focal length, which corresponds to the radius of the GRS, and w is the beam waist. The idea is to optimize the beam parameter a such that the FRB matches the SPPs radiation pattern, whose far field is given by Eq. (4) in the Appendix.

Figures 2(b)–2(e) illustrate the calculated far field for different NWs and substrates at λ = 633 nm. In Fig. 2(b) the field of a gold NW on glass is maximum at about θ = 18° when r = 160 nm, showing that the FRB does not need to be tightly focused. Indeed, good overlap between the two fields is empirically obtained by setting a = 3.1, a value that leads to moderate focusing even with high-NA lenses [22]. Interestingly, the radiation pattern does not depend very much on the refractive index of the substrate if one tunes the NW radius to minimize reflections, as evident in the comparison of Fig. 2(b) with Fig. 2(c). An intuitive explanation is found if the NW is considered as an aperture of radius r. A larger n increases the wavevector in the forward direction kz = √(2π/λ)2n2kρ2, but a smaller aperture increases the span of the transverse wavevector kρ ∈ [0,2π/r]. These effects compensate each others and lead to a small change in the radiation pattern.

 

Fig. 2. (a) Matching the NW radiation pattern with a FRB. A radially-polarized beam (RB) is focused by an aplanatic lens onto the NW. The filled red curves sketch the intensity profile of a RB and the reference plane represents the integration domain used for the near-to-far-field transformation of the field radiated by the SPPs. (b)–(e) The electric field E of the FRB on the Gaussian reference sphere (GRS) can match that radiated from the NW if the RB is adjusted by varying a = f/w, where f is the lens focal length and w is the beam waist. E of the FRB (black solid curves) and the NW (red dots) on the GRS are displayed for different parameters. The vacuum wavelength is λ = 633 nm, f = 1.8 mm and a = 90°.

Download Full Size | PPT Slide | PDF

As shown in Fig. 2(d), more directionality can be obtained by working with higher-order standing waves [see Fig. 1(d)]. The peak of the radiation pattern is now close to θ = 12°, and its width is significantly narrower. However, besides the existence of wide secondary lobe, the main drawback is the larger NW radius, which for the same tapering angle implies a longer path for nanofocusing. Thus, higher-order patterns are interesting only for applications in a spectral range where propagation lengths are much greater than the nanocone dimensions [29].

As one last representative case, Fig. 2(e) displays the SPPs radiation pattern for a silver NW on glass for r = 160 nm. The curve is very close to that of Fig. 2(b), as expected if one notes that the reflection minima in Fig. 1(b) occur for nearly the same NW radii. Therefore, the advantage of using silver in place of gold NWs is only in the longer propagation length of SPPs due to lower absorption losses [35]. While in Fig. 2(b) the beam parameter a is set to overlap the NW and the FRB electric fields for both small and large angles, in Fig. 2(e) the optimization targets only small angles. In the next section we will investigate how this affects the excitation of SPP in the NW.

2.3. Efficient Excitation of SPP in Nanowires

Having found that a FRB can match the radiation pattern of SPPs in semi-infinite metal NWs, we assessed the coupling efficiency in a more quantitative manner. To this end, we computed the electromagnetic field of a FRB in the focal region [37] and used it as a source for the BOR-FDTD simulations.

Figure 3(a) shows the time-averaged magnetic field of a FRB in an infinite glass background for a = 3.1 and full NA=n sin α, with α = 90°. Next, we performed BOR-FDTD simulations for gold and silver NWs on glass, varying a and the position of the focal spot with respect to the NW facet. The conversion efficiency was calculated by taking the ratio of the power coupled in the TM0 SPP and the power in the incident FRB. Selected data are shown in Fig. 3(b). For both gold and silver NWs the efficiency is about 90% if the NW end is close to the focal spot and it remains larger than 60% even 400 nm away from the optimal position. The maximum does not occur exactly when the NW facet is in focus because the glass-air interface changes the properties of a focused beam [38]. Figure 3(c) confirms that NW radius and operating wavelength are not independent from each others since the coupling efficiency drops when the r departs from the value that minimizes reflections [see Fig. 1(b)].

 

Fig. 3. (a) Time-averaged magnetic field for a FRB in an infinite glass background (a = 3.1, n = 1.5). (b) Coupling efficiency as a function of the NW position with respect to the focal spot. (c) Coupling efficiency as a function of the NW radius, when the NW position is 100 nm. (d) BOR-FDTD simulation for a FRB incident on a gold NW on glass with r = 160 nm. The beam parameter is a = 3.1 and the focal spot is 100 nm before the NW facet. The white lines sketch the position of the substrate and the NW for the coupling problem. In (a) and (d) the z coordinate is with respect to the focal spot and the vertical red lines indicate the source position.

Download Full Size | PPT Slide | PDF

Figure 3(b) shows that choosing a = 3.6 yields similar performances to the case for a = 3.1, suggesting that the FRB should be foremost optimized in the peak region. Therefore, lenses with a lower NA should not affect these results. For example, in Fig. 2(d) the field amplitude of the FRB at θ= 45° is about 10% of the maximum (1% for the intensity), meaning that an NA of 0.7 in air would be enough to couple most of the beam energy into the SPP.

To give more insight on the conversion process, Fig. 3(d) displays the time-averaged magnetic field for the case of a FRB impinging on a gold NW on glass when r = 160 nm, a = 3.1, and the focal spot is 100 nm before the NW end facet. The beam is partially reflected, but the color scale shows that most of the energy is coupled into the SPP mode. Moreover, the field pattern confirms that the excitation of a standing wave on the NW facet plays a very important role in the conversion of photons into SPPs.

2.4. Nanofocusing and Spatial Resolution

The efficient excitation of SPPs in NWs can be immediately transferred to nanocones, provided that the tapering angle of the nanocone is not large (adiabatic focusing) [5–7]. Figure 4(a) sketches a possible implementation of a cantilever-based high-throughput SNOM. The radially-polarized beam is focused by a lens onto the nanocone base. The dielectric interface between the lens and the cantilever has a small effect on the beam profile, which if necessary can be compensated by placing a solid-immersion lens. The energy is then converted into TM0 SPPs and nanofocused. Since the tip apex is out of focus, the direct light of the FRB is almost negligible in the scanning region [27]. The device can also be operated in the collection mode, where SPPs generated by a local source near the nanocone tip propagate along the nanocone and radiate with a directional pattern towards the collection optics. The weak resonant character of the standing wave adds the important advantage of large operation bandwidths, which were found also for the case of butt-coupling with a nanofiber [14]. For example, the minima in Fig. 1(b) and, likewise, the peak in Fig. 3(c) have a width that is sufficient for collecting and launching fs pulses in the device.

 

Fig. 4. (a) Scheme of a cantilever-based high-throughput SNOM. (b) Normalized energy density W in a plane located at z = 1115 nm from the cantilever when a gold cone is illuminated by a FRB under the same conditions of Fig. 3(d) (see text for details). The plane is 5 nm from the cone tip. The graph shows also W for various z when the cone is not present. (c) Zoom of (b) for the case where a gold cone is present. The contributions to W due to the two electric field components Ez and Eρ are indicated as WEz and W, respectively.

Download Full Size | PPT Slide | PDF

Since the propagation properties of SPPs on metal nanocones have been thoroughly discussed in the literature [5–7, 28–32], here we only emphasize the field enhancement and the spatial resolution of the SNOM device. To this purpose we consider the normalized energy density W = 0.5(ε|E|2 + μ|H|2)/WBL, where WBL = Pinck2/(3πc) is the maximum achievable by far-field focusing for a given incident power Pinc and wavevector k [39]. Since in our model the FRB is propagating from a glass substrate, we set WBL for a homogeneous medium with a refractive index equal to 1.5.

We then chose a gold nanocone with a base radius of 160 nm and a tapering angle of 8° illuminated by a FRB with a = 3.1. The tip apex was a paraboloid (z = ρ2/(3.2nm)) and the cantilever was modeled as a semi-infinite glass substrate. Figure 4(b) plots W at a distance z = 1115 nm from the cantilever, which corresponds to a plane 5 nm away from the cone tip. A zoom of W is shown in Fig. 4(c), where the contributions associated with the longitudinal (Ez) and transverse (Eρ) electric field components are also indicated. The FWHM for W is of the order of 10 nm and it is primarily due to Ez. The maximum value of W reveals that for the same Pinc the nanocone allows energy concentrations that are nearly 1000 times larger than what can be achieved by far-field focusing. Furthermore, the total energy at the observation plane is about 65% of that near the focus of the FRB, proving that a large fraction of optical energy can be transported to the nanoscale. Recent experiments on SPP excitation in NWs by adiabatic compressors have indeed found similar efficiencies in the near-infrared spectral range [40].

At last it is interesting to note how the features of a FRB can be exploited to minimize background illumination. To this aim, Fig. 4(b) displays the W obtained without gold cone at different distances from the cantilever and for the same incident FRB. We found that the W of the FRB near the cone tip (z = 1100 nm) is more than two orders of magnitude smaller than the W in the focal region (z = 20 nm). This corresponds to a strong background suppression compared to illuminations where the incident beam is focused on the cone tip.

3. Conclusions

We demonstrated an efficient scheme for converting free-space photons into SPPs in NWs, and combined it with nanofocusing to concentrate optical energy below the diffraction limit with a high throughput. Our approach relies on the directional radiation and low reflection of SPPs at the NW end, which occur if the NW radius is chosen according to the operation wavelength and the supporting substrate. These properties are associated with the formation of a standing wave at the NW facet, as previously found for the case of butt-coupling with a nanofiber [14]. Furthermore, by analyzing the radiation pattern and polarization in the far region we identified weakly-focused radially-polarized beams as the best way to excite SPPs from the NW facet. We showed indeed that conversion efficiencies of 90% can be reached by optimizing the beam parameters and the position of the NW in the focal region.

In contrast to previous works on metal nanocones and radially-polarized light, which do not focus the beam on the nanocone base [23–26], our scheme yields a better conversion efficiency and lower background noise caused by direct illumination of the sample. These results were presented for λ = 633 nm, but any wavelength from the UV to the near-IR range would work by adjusting the NW radius and composition [14]. Moreover, in comparison to a fiber-based high-throughput SNOM [14], the conversion efficiency is only slightly lower and the device presented here is easier to implement with existing scanning-probe technology [41].

For the huge intensity that can be achieved at the nanocone tip and the large operation bandwidth, we envision not only better implementations of fluorescence, Raman and other nonlinear (time-resolved) nanoscopies [8–10], but also applications in all areas that would benefit from high-throughput concentration of optical energy in nanoscale spots and fs time scales [42].

A. Body-of-Revolution FDTD

The electromagnetic properties of a BOR are conveniently studied in cylindrical coordinates (ρ, ϕ, z). The general solution of Maxwell’s equations can be expanded into even and odd cylindrical modes with azimuthal dependence cos() and sin(), respectively. Since the TM0 SPP mode is even with m = 0, the field takes the simple form

E(ρ,z)=Eρ(ρ,z)ρ̂+Ez(ρ,z)ẑ,H(ρ,z)=Hϕ(ρ,z)ϕ̂.

The same holds for the field radiated from the NW facet, because coupling to other modes is avoided by symmetry. These equations clearly show that the full electromagnetic problem can be solved by considering only two dimensions. We performed this task using the BOR-FDTD algorithm, where the Maxwell curl equations in cylindrical coordinates are discretized in the ρz-plane [43]. By this method we could use very fine meshes without compromising computational speed and memory usage. Furthermore, the implementation of cylindrical symmetry increases the accuracy in comparison with a full three-dimensional FDTD approach that has the same mesh pitch.

The simulation domain was truncated using perfectly matched layers (PML). Either the SPP or the FRB fields were launched using a line source with amplitude and phase given by the incident field at that location. This is indicated in Figs. 1(a)–1(d), 3(a) and 3(d) by a red line. The dispersive dielectric function of silver or gold was included by fitting the tabulated values [35] with a Drude dispersion model around the working wavelength. Reflection and coupling efficiency were obtained by projecting the field on the SPP mode, as described in Ref. [14]. The FDTD mesh was set to 1 nm for the NW and 0.5 nm for the nanocone studies.

B. Near-to-Far-Field Transformation

The near-to-far field transformation was performed starting from the electromagnetic field obtained by BOR-FDTD calculations. On the reference plane shown in Fig. 2(a), one defines equivalent electric and magnetic surface current densities, which respectively are Js = − × E and Ms = × H, where is the unit vector normal to the surface. Each current element radiates to the far field as a dipolar source. By integrating the contribution of these elements over that plane, one obtains the electromagnetic field in the far region [43]. Symmetry considerations imply that on the GRS the electric field has only the θ component in spherical coordinates (r, θ, φ), which reads

E(r,θ)=keikr2reikzocosθ0ρmaxdρρJ1(sinθ)(Eρ(ρ,zo)+ZHϕ(ρ,zo)cosθ)θ̂.

J1 is the Bessel function of the first kind [44], zo is where the reference plane intercepts the z-axis, Z is the medium impedance and k is the wavevector. ρmax should be large enough to make the contribution of the excluded field negligible.

Acknowledgments

We thank F. De Angelis, E. Di Fabrizio, M. Celebrano, K.-G. Lee and S. Götzinger for helpful conversations. This work was supported by ETH Zurich grant TH-49/06-1.

References and links

1. L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995). [CrossRef]   [PubMed]  

2. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001). [CrossRef]   [PubMed]  

3. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005). [CrossRef]   [PubMed]  

4. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” New J. Phys. 10, 105005 (2008). [CrossRef]  

5. F. Keilmann, “Surface-polariton propagation for scanning near-field optical microscopy application,” J. Microscopy 194, 567–570 (1999). [CrossRef]  

6. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000). [CrossRef]  

7. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef]   [PubMed]  

8. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999). [CrossRef]  

9. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004). [CrossRef]   [PubMed]  

10. A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. 47, 8178–8191 (2008). [CrossRef]  

11. S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008). [CrossRef]  

12. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006). [CrossRef]   [PubMed]  

13. G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025–2027 (2004). [CrossRef]  

14. X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9, 3756–3761 (2009). [CrossRef]   [PubMed]  

15. M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instr. 80, 033704 (2009). [CrossRef]  

16. R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000). [CrossRef]  

17. K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008). [CrossRef]  

18. E. G. Bortchagovsky, S. Klein, and U. C. Fischer, “Surface plasmon mediated tip enhanced raman scattering,” Appl. Phys. Lett. 94, 063118 (2009). [CrossRef]  

19. A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86, 013102 (2005). [CrossRef]  

20. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007). [CrossRef]   [PubMed]  

21. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008). [CrossRef]   [PubMed]  

22. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

23. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22, 1432–1441 (2005). [CrossRef]  

24. M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008). [CrossRef]  

25. T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Nanofocusing of radially polarized light with dielectric-metal-dielectric probe,” Opt. Express 17, 9191–9196 (2009). [CrossRef]   [PubMed]  

26. F. I. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009). [CrossRef]  

27. M. Agio, X.-W. Chen, and V. Sandoghdar, “Nanofocusing radially-polarized beams for high-throughput funnel-ing of optical energy,” (2010), US Patent Pending.

28. N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2, 31–37 (2007). [CrossRef]  

29. M. W. Vogel and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363, 507–511 (2007). [CrossRef]  

30. A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006). [CrossRef]  

31. A. V. Goncharenko, J.-K. Wang, and Y.-C. Chang, “Electric near-field enhancement of a sharp semi-infinite conical probe: Material and cone angle dependence,” Phys. Rev. B 74, 235442 (2006). [CrossRef]  

32. A. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007). [CrossRef]  

33. Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009). [CrossRef]   [PubMed]  

34. R. Gordon, “Reflection of cylindrical surface waves,” Opt. Express 17, 18621–18629 (2009). [CrossRef]  

35. D. R. Lide, ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2006), 87th ed.

36. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. ii. structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959). [CrossRef]  

37. N. M. Mojarad and M. Agio, “Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams,” Opt. Express 17, 117–122 (2009). [CrossRef]   [PubMed]  

38. H. Ling and S.-W. Lee, “Focusing of electromagnetic waves through a dielectric interface,” J. Opt. Soc. Am. A 1, 965–973 (1984). [CrossRef]  

39. I. M. Bassett, “Limit to concentration by focusing,” J. Mod. Opt. 33, 279–286 (1986).

40. E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009). [CrossRef]   [PubMed]  

41. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010). [CrossRef]  

42. M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duo`, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008). [CrossRef]  

43. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2005), 3rd ed.

44. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999), 3rd ed.

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995).
    [CrossRef] [PubMed]
  2. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001).
    [CrossRef] [PubMed]
  3. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable super emitter,” Phys. Rev. Lett. 95, 017402 (2005).
    [CrossRef] [PubMed]
  4. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
    [CrossRef]
  5. F. Keilmann, “Surface-polariton propagation for scanning near-field optical microscopy application,” J. Microsc. 194, 567–570 (1999).
    [CrossRef]
  6. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
    [CrossRef]
  7. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef] [PubMed]
  8. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
    [CrossRef]
  9. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
    [CrossRef] [PubMed]
  10. A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. 47, 8178–8191 (2008).
    [CrossRef]
  11. S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
    [CrossRef]
  12. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
    [CrossRef] [PubMed]
  13. G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025–2027 (2004).
    [CrossRef]
  14. X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9, 3756–3761 (2009).
    [CrossRef] [PubMed]
  15. M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
    [CrossRef]
  16. R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
    [CrossRef]
  17. K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
    [CrossRef]
  18. E. G. Bortchagovsky, S. Klein, and U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94, 063118 (2009).
    [CrossRef]
  19. A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86, 013102 (2005).
    [CrossRef]
  20. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
    [CrossRef] [PubMed]
  21. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
    [CrossRef] [PubMed]
  22. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
  23. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22, 1432–1441 (2005).
    [CrossRef]
  24. M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
    [CrossRef]
  25. T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Nanofocusing of radially polarized light with dielectric-metal dielectric probe,” Opt. Express 17, 9191–9196 (2009).
    [CrossRef] [PubMed]
  26. F. I. Baida, and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009).
    [CrossRef]
  27. M. Agio, X.-W. Chen, and V. Sandoghdar, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy,” (2010), US Patent Pending.
  28. N. A. Issa, and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2, 31–37 (2007).
    [CrossRef]
  29. M. W. Vogel, and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363, 507–511 (2007).
    [CrossRef]
  30. A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
    [CrossRef]
  31. A. V. Goncharenko, J.-K. Wang, and Y.-C. Chang, “Electric near-field enhancement of a sharp semi-infinite conical probe: Material and cone angle dependence,” Phys. Rev. B 74, 235442 (2006).
    [CrossRef]
  32. A. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
    [CrossRef]
  33. Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
    [CrossRef] [PubMed]
  34. R. Gordon, “Reflection of cylindrical surface waves,” Opt. Express 17, 18621–18629 (2009).
    [CrossRef]
  35. D. R. Lide, ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2006), 87th Ed.
  36. B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
    [CrossRef]
  37. N. M. Mojarad, and M. Agio, “Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams,” Opt. Express 17, 117–122 (2009).
    [CrossRef] [PubMed]
  38. H. Ling, and S.-W. Lee, “Focusing of electromagnetic waves through a dielectric interface,” J. Opt. Soc. Am. A 1, 965–973 (1984).
    [CrossRef]
  39. I. M. Bassett, “Limit to concentration by focusing,” J. Mod. Opt. 33, 279–286 (1986).
  40. E. Verhagen, M. Spasenovi?, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
    [CrossRef] [PubMed]
  41. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
    [CrossRef]
  42. M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
    [CrossRef]
  43. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2005), 3rd Ed.
  44. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999), 3rd Ed.

2010

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

2009

E. Verhagen, M. Spasenovi?, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9, 3756–3761 (2009).
[CrossRef] [PubMed]

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

E. G. Bortchagovsky, S. Klein, and U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94, 063118 (2009).
[CrossRef]

T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Nanofocusing of radially polarized light with dielectric-metal dielectric probe,” Opt. Express 17, 9191–9196 (2009).
[CrossRef] [PubMed]

F. I. Baida, and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009).
[CrossRef]

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
[CrossRef] [PubMed]

R. Gordon, “Reflection of cylindrical surface waves,” Opt. Express 17, 18621–18629 (2009).
[CrossRef]

N. M. Mojarad, and M. Agio, “Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams,” Opt. Express 17, 117–122 (2009).
[CrossRef] [PubMed]

2008

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. 47, 8178–8191 (2008).
[CrossRef]

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

2007

N. A. Issa, and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2, 31–37 (2007).
[CrossRef]

M. W. Vogel, and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363, 507–511 (2007).
[CrossRef]

A. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
[CrossRef]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

2006

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

A. V. Goncharenko, J.-K. Wang, and Y.-C. Chang, “Electric near-field enhancement of a sharp semi-infinite conical probe: Material and cone angle dependence,” Phys. Rev. B 74, 235442 (2006).
[CrossRef]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

2005

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable super emitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86, 013102 (2005).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22, 1432–1441 (2005).
[CrossRef]

2004

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025–2027 (2004).
[CrossRef]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

2001

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

2000

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

1999

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

F. Keilmann, “Surface-polariton propagation for scanning near-field optical microscopy application,” J. Microsc. 194, 567–570 (1999).
[CrossRef]

1995

1986

I. M. Bassett, “Limit to concentration by focusing,” J. Mod. Opt. 33, 279–286 (1986).

1984

1959

B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
[CrossRef]

Adam, P.-M.

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Aeschimann, L.

Agio, M.

N. M. Mojarad, and M. Agio, “Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams,” Opt. Express 17, 117–122 (2009).
[CrossRef] [PubMed]

X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9, 3756–3761 (2009).
[CrossRef] [PubMed]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Allegrini, M.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Andreani, L. C.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Antosiewicz, T. J.

Babadjanyan, A. J.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

Baida, F. I.

F. I. Baida, and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009).
[CrossRef]

Bassett, I. M.

I. M. Bassett, “Limit to concentration by focusing,” J. Mod. Opt. 33, 279–286 (1986).

Bäuerle, D.

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025–2027 (2004).
[CrossRef]

Bek, A.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

Belkhir, A.

F. I. Baida, and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009).
[CrossRef]

Biagioni, P.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Bortchagovsky, E. G.

E. G. Bortchagovsky, S. Klein, and U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94, 063118 (2009).
[CrossRef]

Bräuchle, C.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

Braun, K.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Brotosudarmo, T. H. P.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

Burr, G.

K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

Businaro, L.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Candeloro, P.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

Celebrano, M.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Cerullo, G.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Chang, D. E.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Chang, H.-C.

A. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
[CrossRef]

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

Chang, Y.-C.

A. V. Goncharenko, J.-K. Wang, and Y.-C. Chang, “Electric near-field enhancement of a sharp semi-infinite conical probe: Material and cone angle dependence,” Phys. Rev. B 74, 235442 (2006).
[CrossRef]

Chen, X.-W.

X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9, 3756–3761 (2009).
[CrossRef] [PubMed]

Das, G.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

De Angelis, F.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

de Rooij, N. F.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Dechant, A.

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86, 013102 (2005).
[CrossRef]

Descrovi, E.

Dew, S. K.

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86, 013102 (2005).
[CrossRef]

Di Fabrizio, E.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Duò, L.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Dvoynenko, M. M.

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Eckert, R.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Eisler, H.-J.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable super emitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Elezzabi, A. Y.

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86, 013102 (2005).
[CrossRef]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Fang, Y.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
[CrossRef] [PubMed]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable super emitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Finazzi, M.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Fischer, U.

K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

Fischer, U. C.

E. G. Bortchagovsky, S. Klein, and U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94, 063118 (2009).
[CrossRef]

Fleischer, M.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Freyland, J. M.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Galli, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Gersen, H.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Goncharenko, A.

A. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
[CrossRef]

Goncharenko, A. V.

A. V. Goncharenko, J.-K. Wang, and Y.-C. Chang, “Electric near-field enhancement of a sharp semi-infinite conical probe: Material and cone angle dependence,” Phys. Rev. B 74, 235442 (2006).
[CrossRef]

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

Gordon, R.

Govorov, A. O.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

Gramotnev, D. K.

M. W. Vogel, and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363, 507–511 (2007).
[CrossRef]

Grand, J.

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Grosjean, T.

K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

Guckenberger, R.

N. A. Issa, and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2, 31–37 (2007).
[CrossRef]

Häffner, M.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Hao, F.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
[CrossRef] [PubMed]

Hartschuh, A.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. 47, 8178–8191 (2008).
[CrossRef]

Harutyunyan, H.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

Hashimoto, M.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Hayazawa, N.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Hecht, B.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable super emitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995).
[CrossRef] [PubMed]

Heeren, A.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Heinzelmann, H.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Heitz, J.

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025–2027 (2004).
[CrossRef]

Hemmer, P. R.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Herzig, H.-P.

Huang, Y.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
[CrossRef] [PubMed]

Ichimura, T.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Inouye, Y.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Irvine, S. E.

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86, 013102 (2005).
[CrossRef]

Issa, N. A.

N. A. Issa, and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2, 31–37 (2007).
[CrossRef]

Kalkbrenner, T.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001).
[CrossRef] [PubMed]

Kawata, S.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Keilmann, F.

F. Keilmann, “Surface-polariton propagation for scanning near-field optical microscopy application,” J. Microsc. 194, 567–570 (1999).
[CrossRef]

Kern, D. P.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Klein, S.

E. G. Bortchagovsky, S. Klein, and U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94, 063118 (2009).
[CrossRef]

Kuipers, L.

E. Verhagen, M. Spasenovi?, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Labardi, M.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Lazzarino, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

Lee, S.-W.

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Li, Z.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
[CrossRef] [PubMed]

Liberale, C.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Ling, H.

Lukin, M. D.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Mackowski, S.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

Maier, A. J.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

Maksymov, I.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Maletzky, T.

K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

Margaryan, N. L.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

Meixner, A. J.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001).
[CrossRef] [PubMed]

Mojarad, N. M.

Nakagawa, W.

Neacsu, C. C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Nerkararyan, K. V.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

Noell, W.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Nordlander, P.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
[CrossRef] [PubMed]

Novotny, L.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995).
[CrossRef] [PubMed]

Patrini, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable super emitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995).
[CrossRef] [PubMed]

Polli, D.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Polman, A.

E. Verhagen, M. Spasenovi?, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001).
[CrossRef] [PubMed]

Raschke, M. B.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Richards, B.

B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
[CrossRef]

Ropers, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Sánchez, E. J.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Sandoghdar, V.

X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9, 3756–3761 (2009).
[CrossRef] [PubMed]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001).
[CrossRef] [PubMed]

Scheer, H.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

Schürmann, G.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

Spasenovic, M.

E. Verhagen, M. Spasenovi?, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Stade, F.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Stadler, J.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Stanciu, C.

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

Staufer, U.

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22, 1432–1441 (2005).
[CrossRef]

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

Szoplik, T.

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
[CrossRef]

Tanaka, K.

K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

Vaccaro, L.

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
[CrossRef]

Verhagen, E.

E. Verhagen, M. Spasenovi?, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Vogel, M. W.

M. W. Vogel, and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363, 507–511 (2007).
[CrossRef]

Wang, J.-K.

A. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
[CrossRef]

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

A. V. Goncharenko, J.-K. Wang, and Y.-C. Chang, “Electric near-field enhancement of a sharp semi-infinite conical probe: Material and cone angle dependence,” Phys. Rev. B 74, 235442 (2006).
[CrossRef]

Wolf, E.

B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
[CrossRef]

Wörmke, S.

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

Wróbel, P.

Wysocki, G.

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025–2027 (2004).
[CrossRef]

Xie, X. S.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Xu, H.

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
[CrossRef] [PubMed]

Zavelani-Rossi, M.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

Angew. Chem. Int. Ed.

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. 47, 8178–8191 (2008).
[CrossRef]

Appl. Phys. B

K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).

Appl. Phys. Lett.

R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000).
[CrossRef]

M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008).
[CrossRef]

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006).
[CrossRef]

E. G. Bortchagovsky, S. Klein, and U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94, 063118 (2009).
[CrossRef]

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86, 013102 (2005).
[CrossRef]

G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025–2027 (2004).
[CrossRef]

M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008).
[CrossRef]

J. Appl. Phys.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

J. Microsc.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001).
[CrossRef] [PubMed]

F. Keilmann, “Surface-polariton propagation for scanning near-field optical microscopy application,” J. Microsc. 194, 567–570 (1999).
[CrossRef]

J. Mod. Opt.

I. M. Bassett, “Limit to concentration by focusing,” J. Mod. Opt. 33, 279–286 (1986).

J. Opt. Soc. Am. A

N. J. Phys.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
[CrossRef]

Nano Lett.

X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9, 3756–3761 (2009).
[CrossRef] [PubMed]

S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008).
[CrossRef]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009).
[CrossRef] [PubMed]

Nat. Nano.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

M. W. Vogel, and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363, 507–511 (2007).
[CrossRef]

Phys. Rev. B

A. V. Goncharenko, J.-K. Wang, and Y.-C. Chang, “Electric near-field enhancement of a sharp semi-infinite conical probe: Material and cone angle dependence,” Phys. Rev. B 74, 235442 (2006).
[CrossRef]

Phys. Rev. Lett.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable super emitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
[CrossRef] [PubMed]

E. Verhagen, M. Spasenovi?, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Plasmonics

N. A. Issa, and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2, 31–37 (2007).
[CrossRef]

F. I. Baida, and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009).
[CrossRef]

Proc. R. Soc. A

B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
[CrossRef]

Rev. Sci. Instrum.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009).
[CrossRef]

Ultramicroscopy

A. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007).
[CrossRef]

Other

D. R. Lide, ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2006), 87th Ed.

M. Agio, X.-W. Chen, and V. Sandoghdar, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy,” (2010), US Patent Pending.

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2005), 3rd Ed.

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999), 3rd Ed.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Layout of a semi-infinite gold NW in air on a glass substrate. The dashed lines delimit the computational domain of BOR-FDTD. (b) Reflection as a function of the NW radius for different metals and substrates. (c) and (d) Time-averaged magnetic field for a gold NW on glass (n = 1.5) with r = 160 nm and r = 340 nm, respectively. In (b)–(d) the vacuum wavelength is 633 nm. In (a), (c) and (d) the solid red lines indicate the source position.

Fig. 2.
Fig. 2.

(a) Matching the NW radiation pattern with a FRB. A radially-polarized beam (RB) is focused by an aplanatic lens onto the NW. The filled red curves sketch the intensity profile of a RB and the reference plane represents the integration domain used for the near-to-far-field transformation of the field radiated by the SPPs. (b)–(e) The electric field E of the FRB on the Gaussian reference sphere (GRS) can match that radiated from the NW if the RB is adjusted by varying a = f/w, where f is the lens focal length and w is the beam waist. E of the FRB (black solid curves) and the NW (red dots) on the GRS are displayed for different parameters. The vacuum wavelength is λ = 633 nm, f = 1.8 mm and a = 90°.

Fig. 3.
Fig. 3.

(a) Time-averaged magnetic field for a FRB in an infinite glass background (a = 3.1, n = 1.5). (b) Coupling efficiency as a function of the NW position with respect to the focal spot. (c) Coupling efficiency as a function of the NW radius, when the NW position is 100 nm. (d) BOR-FDTD simulation for a FRB incident on a gold NW on glass with r = 160 nm. The beam parameter is a = 3.1 and the focal spot is 100 nm before the NW facet. The white lines sketch the position of the substrate and the NW for the coupling problem. In (a) and (d) the z coordinate is with respect to the focal spot and the vertical red lines indicate the source position.

Fig. 4.
Fig. 4.

(a) Scheme of a cantilever-based high-throughput SNOM. (b) Normalized energy density W in a plane located at z = 1115 nm from the cantilever when a gold cone is illuminated by a FRB under the same conditions of Fig. 3(d) (see text for details). The plane is 5 nm from the cone tip. The graph shows also W for various z when the cone is not present. (c) Zoom of (b) for the case where a gold cone is present. The contributions to W due to the two electric field components Ez and Eρ are indicated as WEz and W, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E(ρ)=ρ̂ Eo exp (ρ2/(2w2))ρ/w,
E(a,θ)=Eoexp(a2sin2θ/2)asinθcosθθ̂ ,
E(ρ,z)=Eρ (ρ,z)ρ̂ +Ez(ρ,z)ẑ , H(ρ,z)=Hϕ (ρ,z)ϕ̂ .
E(r,θ)=keikr2reikzocosθ 0ρmax d ρρ J1 (sinθ)(Eρ(ρ,zo)+ZHϕ(ρ,zo)cosθ)θ̂ .

Metrics