Abstract

We present an abruptly tapered twin-core fiber optical tweezers, which is fabricated by fusing and drawing the twin-core fiber. In the twin-core fiber, the two beams are guided by the tapered fiber. At the end of the fiber tip, a larger converge angle between the two beams are made due to the abrupt tapered shape, which is formed a fast divergent optical field. The microscopic particle trapping performance of this special designed tapered twin-core fiber tip is investigated. The functionality of the proposed novel twin-core fiber optical tweezers is extended since an in-fiber integrated Mach-Zehnder interferometer has been used to control orientation of the trapped particle. The distribution of the optical field emerging from the tapered fiber tip is simulated based on the beam propagation method (BPM). By using this two-beam combination technique, a strong enough gradient forces well is obtained for microscopic particles trapping in three dimensions. The abruptly tapered twin-core fiber optical tweezers is rigid and easy to handle, especially useful for building up a multi-tweezers system for trapping and manipulating micro-scale particles.

© 2008 Optical Society of America

1. Introduction

Since first demonstrated by Ashkin in 1986[1, 2], optical tweezers (a single-beam gradient force trap) technique has been developed in several directions. Examples are optical micro-machines and micro-components [3–7], the extension of optical tweezers to multiple beam sites to create two-dimensional particle arrays [8,9] as well as stacking of a small number of particles in standing-wave geometries [10] and by using Bessel light beams [11] to construct three-dimensional trapped structures [12]. In parallel with this, the optical tweezers technique has been widely used in biology, physics and chemistry. Especially in biology, it has been applied in researches on cells, viruses, bacteria and DNA molecules. Applications now range from the manipulation of the nano-particles to the assembly of the microstructures [13]. Usually a high N.A. microscope objective is necessary to focus the laser beam in the traditional optical tweezers. Despite the relevant results achieved in many fields, the bulky structure of the traditional optical tweezers still limits their utilization in several environments. In order to make the manipulation of the tool easier and more convenient, fiber optical tweezers has been developed since 1993[14]. By using optical fibers to trap a micro-object [15,16] is much easier to handle, and much more suitable for practical use such as in trapping, levitating and rotating of the microscopic particles [17–23]. Usually, etching or drawing method [24–26] was used to fabricate the standard single mode fiber tip for particle trapping in three dimensions. Here we describe a means of implementing optical tweezers by using a twin-core fiber that extends the functionality of the fiber optical tweezers by allowing trapping with orientation, more like the real tweezers (tiny pair of tongs).

2. Twin-core fiber tapered probe

Unlike the polishing and chemical etching manufacture techniques, the twin-core fiber (TCF) optical tweezers was manufactured by heating and drawing the twin-core fiber to form an abruptly taper profile. At the tip of the tapered fiber, a small half spherical high numerical aperture micro-lens is automatically formed due to the surface tension of the fused quartz glass. Figure 1 shows the cross-section of the twin-core fiber and the tapered fiber probe (see Fig. 1(a)) used in our experiment. In the abruptly tapered zone, the two beams coming from each core were guided in the tapered angle, and gradually transferred from the guided mode into the radiation modes due to the core diameter abruptly reduced near the fiber tip, as shown in Fig. 1(b) and (c). The two radiation beams are passing though the tapered twin-core fiber tip and forming a fast divergent-beam away from the fiber tip. By using this two-beam combination technique, a strong enough gradient forces potential well is obtained for micro-particles trapping in three dimensions with the orientation in the twin-core plane.

 

Fig. 1. The abrupt twin-core fiber taper profile and the two beams radiation simulation result by BMP (beam propagation method).

Download Full Size | PPT Slide | PDF

The configuration of the twin-core fiber optical tweezers is described in Fig. 2. It can be seen that from Fig. 2, an in-fiber integrated twin-core fiber Mach-Zehnder interferometer is build up by using the same twin-core fiber. The tapered twin-core fiber is linked with the Mach-Zehnder interferometer, and the intensities transmitted in the two cores can be modulated by bending the Mach-Zehnder interferometer. Thus, the output two beams from the Mach-Zehnder interferometer is the input two beams of the tapered twin-core fiber. The optical phase of two beams is opposite (represents as green and blue line in Fig. 2) and its intensities can be easily controlled by bending the Mach-Zehnder interferometer, as shown in Fig. 2. In this way, the in-fiber integrated Mach-Zehnder interferometer can be used to control orientation of the trapped particle.

 

Fig. 2. The configuration of the twin-core fiber optical tweezers.

Download Full Size | PPT Slide | PDF

3. Theoretical simulation results

Near the tip of the twin-core tapered fiber end, the intensity distribution of the output optical field is simulated by using the beam propagation method (BPM) [27]. In the simulation, it is assumed that the twin-core fiber tapered probe is immersed in the surrounding medium (say, water) with the refractive index 1.33, and the refractive indices of the twin-core fiber cladding and the fiber core are 1.452 and 1.463, respectively. The 3-dimensional finite difference BPM has been used to solve the Helmholtz equations. This method is exact up to the discretization error. The transverse grid sizes Δx, Δy are 0.03µm and 0.03µm, respectively. The longitudinal step size Δz is 0.5µm. The transparent boundary conditions were applied. And the Gaussian incident field whit opposite optical phase is launched into both fiber cores simultaneously and the wavelength is 0.98µm.

In our calculation, the Gaussian incident optical power is given by

P0(r)=12πσer22σ2

where, the sport size σ=1.85 µ m.

 

Fig. 3. The far-field radiation intensity distribution at the tapered twin-core fiber tip with input intensity of the two cores ratio is 1:1.

Download Full Size | PPT Slide | PDF

The abruptly tapered fiber profile can be described as

R(z)={12(R0r0)12(R0+r0){tanh[v(zL2)]tanh(vL2)},   0<z<l0r0r02(zl0)2,l0r0zl0

The numerical simulation parameters such as the radius of the twin-core fiber R 0=62.5µm; and the radius of the half spherical micro-lens at the tapered fiber tip is r 0=2.5µm; tapered fiber length l 0=201.5µm, as shown in Fig. 1(a), and the parameter L=288µm, the tapered fiber profile parameter ν=0.018(µm)-1,represents the shape changing characteristics. For the twin-core fiber, the distance between the two cores is 62.5µm, and the diameter of each core is 3.7 µm.

 

Fig. 4. The far-field radiation intensity distribution at the tapered twin-core fiber tip with input intensity of the two cores ratio is 1: 3.

Download Full Size | PPT Slide | PDF

The simulation results of the output far-field intensity distribution are plotted in Fig. 1(b) and (c) and Fig. 3 and 4. From the two-dimensional intensity distribution (Fig. 1(b) and (c)) of the plane in which the two cores lie, it is shown that the optical power is concentrated near the tip of the twin-core fiber. The intensity distributions near the tip at the plane perpendicular to Z direction are given in Fig. 3 and Fig. 4, and the separation distance for each cross-section distribution is 4 µm. It is shown that the two beams are intercrossed inside of the twin-core fiber tip and separated outside of the fiber tip and the divergence angle is over 21 degrees. The difference between Fig. 3 and 4 is the ratio of the intensities transmitted in the two cores, in Fig. 3, it is 1:1 and 1:3 in Fig. 4.

4. Experimental results

The twin-core fiber optical tweezers experimental setup and its working principle are described in Fig. 5. A laser diode (LD) with wavelength at 980nm is used as the light source and its power can be tuned from 0 to 110 mW by adjusting the driving current of the LD. The pigtail fiber of the laser diode is single mode fiber. In order to launch the optical power into the twin-core fiber, firstly, we splice the single mode fiber and the twin-core fiber. Then heating and drawing the fiber at the splicing point, thus the first bi-tapered coupling zone between the single mode single core and twin-core single mode fiber is formed [28]. Finally, we heating and drawing the twin-core fiber at some point between the first bi-tapered coupling zone and the abrupt tapered tip, forming the second bi-tapered coupling zone, in this way, the input power is coupled and shared in the two cores and formed the two beams Mach-Zehnder interferometer. The in-fiber integrated Mach-Zehnder interferometer is used to modulate the intensities of the two beams. Therefore, the transmitted optical power inside in the two cores can be controlled. This leads to the variation of the output optical field distribution at the front of the twin-core fiber tapered end, as shown in Fig. 4.

 

Fig. 5. Experimental set-up and working principle of the twin-core fiber optical tweezers.

Download Full Size | PPT Slide | PDF

The microscopic pictures of the twin-core fibers’ cross-section, abrupt tapered fiber probe and a yeast cell has been trapped in water by the twin-core fiber tip are given in Fig. 6. In order to testing the trapping performance of the twin-core fiber abrupt tapered tip, we put the twin-core fiber optical tweezers into the water and the yeast cells have been used as the trapping particles in our calibration experiment. The output optical power can be controlled by adjusting the driving current of the LD, and the output optical power from the fiber tip versus the trapping force in the lateral direction lie in the two cores plain can be approximately calibrated by using the Stokes law,

F=6πηru

here, u⃑ represents the moving velocity of the trapped particle and r is the radius of the trapped particle. The diameter (2r) of the yeast cells used in our experiments is about 5.5~6.5µm which are immersed in the water at room temperature 293 K and the dynamic viscosity of water at the room temperature is taken as η=1.002×10-3 (NS/M2). The calibration result is plotted in Fig. 7. Comparing with the case of tapered single mode fiber given in reference [26], its trapping force is more than 3 times at the same optical power.

In this case, the trap is not isotropic, the axial forces are strongly depend on the moving direction and the shape of the taped fiber tip due to the relative moving speed (along the streamline) at the surface of the trapped particle is different from the moving speed of the fiber itself. In our case, the procedure used for the trapping force calibration is similarly given by [29–30].

 

Fig. 6. Image of the twin-core tapered fiber optical tweezers manufactured by heating and drawing with an abruptly tapered profile tip for trapping small particles.

Download Full Size | PPT Slide | PDF

 

Fig. 7. Calibration result of optical power vs. the trapping force.

Download Full Size | PPT Slide | PDF

The elliptical particle trapping and orientation control experiment has been made. When the output power is adjusted in the order of 5 mW, a yeast cell has been trapped at the twin-core fiber tip. It can be seen from the movie given in Fig. 8, the yeast orientation has been changed and adjusted by bending the in-fiber integrated interferometer, in this way, the coupling ratio between the two cores of the twin-core fiber is varied results in the orientation changing of the elliptical yeast. The experimental process has been record by a real-time movie, as shown in Fig. 8. At the same time, the lowest power against the thermal Brownian motion random force for small particle trapping is also tested. For instance, for the yeast cell with the diameter about 5.5~6.5µm, when the power was reduced in the order of 1 mW, the yeast was released from the optical trap at the fiber tip as shown in the attached movie (Fig. 8).

 

Fig. 8. (19Mb) The real-time movie showing that an elliptic yeast cell was trapped by the twin-core tapered fiber optical tweezers and changing the two beams power ratio can control its orientation, after reducing the optical power then the yeast cell is released. [Media 1]

Download Full Size | PPT Slide | PDF

5. Conclusions

In summary, we report on the development of twin-core fiber tapered tip, which can be used to trap particles with low powers (<5 mW). The use of the twin-core fiber tapers allows for small probe size, stiff stability and relatively easy to manufacture, and offers potential applications especially in integrated “lab-on-a-chip” devices. The performance of the demonstrated twin-core fiber optical tweezers would lead to functionality extend in three dimensions optical trapping. And it is easy control and conventional operate as tools for biology and micro-assembling by allowing trapping with orientation, more like the real tweezers (tiny pair of tongs).

Acknowledgments

This research was supported by the National Natural Science Foundations of China, (grant 60577005 and 60707013), and partially supported by the Specialized Research Fund for the Doctoral Program of Higher Education Institute of MOE, China.

References and links

1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]   [PubMed]  

2. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987). [CrossRef]   [PubMed]  

3. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–359 (1998). [CrossRef]  

4. E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676–3681 (1999). [CrossRef]  

5. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “The mechanical equivalence of the spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997). [CrossRef]   [PubMed]  

6. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001). [CrossRef]  

7. L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled Rotation of Optically Trapped Microscopic Particles,” Science 292, 912–912 (2001). [CrossRef]   [PubMed]  

8. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001). [CrossRef]  

9. R. L. Eriksen, P. C. Mogensen, and J. Gluckstad, “Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett. 27, 267–269 (2002). [CrossRef]  

10. P. Zemanek, A. Jonas, L. Sramek, and M. Liska, “Optical trapping of nanoparticles and microparticles using Gaussian standing wave,” Opt. Lett. 24, 1448–1450 (1999). [CrossRef]  

11. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001). [CrossRef]  

12. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and enhanced manipulation of 3-dimensional optically trapped structures,” Science , 296, 1101–1103 (2002). [CrossRef]   [PubMed]  

13. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 21–27 (2003). [CrossRef]  

14. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18, 1867–1869 (1993). [CrossRef]   [PubMed]  

15. E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherical lensed optical fiber trap,” Appl. Phys. Lett. , 66, 1584–1586 (1995). [CrossRef]  

16. K. Taguchi and H. Ueno, “Hiramatsu, T. & Ikeda, M. Optical trapping of dielectric particle and biological cell using optical fiber,” Electron. Lett. 33, 413–414 (1997). [CrossRef]  

17. K. Taguchi, H. Ueno, and M. Ikeda, “Rotational manipulation of a yeast cell using optical fibers,” Electron. Lett. 33, 1249–1250 (1997). [CrossRef]  

18. K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, “Levitation of a microscopic object using plural optical fibers,” Opt. Commun. 176, 43–47 (2000). [CrossRef]  

19. W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, “Combined optical tweezers and optical stretcher in microscopy,” SPIE 4434, 227–232 (2001). [CrossRef]  

20. S. D. Collins, E. Sidick, A. Knoesen, and R.J. Baskin, “Micromachined optical trap for use as a microcytology workstation,” SPIE 2978, 69–74 (1997). [CrossRef]  

21. Z. Hu, J. Wang, and J. Liang, “Manipulation and arrangement of biological and dielectric particles by a. lensed fiber probe,” Opt. Exp. 12, 4123–4128 (2004). [CrossRef]  

22. C. Jensen-McMullin, H. P. Lee, and E. R. Lyons, “Demonstration of trapping, motion control, sensing and. fluorescence detection of polystyrene beads in a multi-fiber optical trap,” Opt. Exp. 13, 2634–2642 (2005). [CrossRef]  

23. M. Ikeda, K. Tanaka, and M. Kittaka, “Tanaka, M. & Shohata, T. Rotational manipulation of a symmetrical plastic micro-object using fiber optic trapping,” Opt. Commun. 239, 103–108 (2004). [CrossRef]  

24. R. S. Taylor and C. Hantovsky, “Particle trapping in 3-D using a single fiber probe with an annular light. Distribution,” Opt. Exp. 11, 2775–2782 (2003). [CrossRef]  

25. G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett. 43, 204–206 (2007). [CrossRef]  

26. Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Exp. 14, 12510–12516 (2006). [CrossRef]  

27. C. Youngchul and D. Nadr, “An assessment of finite difference beam propagation method,” IEEE J Quantum Electron. 26, 1335–1338 (1990). [CrossRef]  

28. L. B. Yuan, Z. H. Liu, and J. Yang, “Coupling characteristics between single-core fiber and multicore fiber,” Opt. Lett. 31, 3237–3239 (2006). [CrossRef]   [PubMed]  

29. O. Muller, M. Schliwa, and H. Felgner, “Calibration of light forces in optical tweezers,” Appl. Opt. 34, 977–980 (1995). [CrossRef]   [PubMed]  

30. N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, “Measurement of trapping efficiency and stiffness in optical tweezers,” Opt. Commun. 214, 15–24 (2002). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769-771 (1987).
    [CrossRef] [PubMed]
  3. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-359 (1998).
    [CrossRef]
  4. E. Higurashi, R. Sawada, and T. Ito, "Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light," Phys. Rev. E 59, 3676-3681 (1999).
    [CrossRef]
  5. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "The mechanical equivalence of the spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997).
    [CrossRef] [PubMed]
  6. P. Galajda and P. Ormos, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249-251 (2001).
    [CrossRef]
  7. L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-912 (2001).
    [CrossRef] [PubMed]
  8. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
    [CrossRef]
  9. R. L. Eriksen, P. C. Mogensen, and J. Gluckstad, "Multiple-beam optical tweezers generated by the generalized phase-contrast method," Opt. Lett. 27, 267-269 (2002).
    [CrossRef]
  10. P. Zemanek, A. Jonas, L. Sramek, and M. Liska, "Optical trapping of nanoparticles and microparticles using Gaussian standing wave," Opt. Lett. 24, 1448-1450 (1999).
    [CrossRef]
  11. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam, " Opt. Commun. 197, 239-245 (2001).
    [CrossRef]
  12. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and enhanced manipulation of 3-dimensional optically trapped structures," Science,  296, 1101-1103 (2002).
    [CrossRef] [PubMed]
  13. D. G. Grier, "A revolution in optical manipulation," Nature 424, 21-27 (2003).
    [CrossRef]
  14. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett. 18, 1867-1869 (1993).
    [CrossRef] [PubMed]
  15. E. R. Lyons and G. J. Sonek, "Confinement and bistability in a tapered hemispherical lensed optical fiber trap," Appl. Phys. Lett.,  66, 1584-1586 (1995).
    [CrossRef]
  16. K. Taguchi, H. Ueno, "Hiramatsu, T. & Ikeda, M. Optical trapping of dielectric particle and biological cell using optical fiber," Electron. Lett. 33, 413-414 (1997).
    [CrossRef]
  17. K. Taguchi, H. Ueno, and M. Ikeda, "Rotational manipulation of a yeast cell using optical fibers," Electron. Lett. 33, 1249-1250 (1997).
    [CrossRef]
  18. K. Taguchi, K. Atsuta, T. Nakata and M. Ikeda, "Levitation of a microscopic object using plural optical fibers," Opt. Commun. 176, 43-47 (2000).
    [CrossRef]
  19. W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, "Combined optical tweezers and optical stretcher in microscopy," SPIE 4434, 227-232 (2001).
    [CrossRef]
  20. S. D. Collins, E. Sidick, A. Knoesen and R.J. Baskin, "Micromachined optical trap for use as a microcytology workstation," SPIE 2978, 69-74 (1997).
    [CrossRef]
  21. Z. Hu, J. Wang, and J. Liang, "Manipulation and arrangement of biological and dielectric particles by a. lensed fiber probe," Opt. Exp. 12, 4123-4128 (2004).
    [CrossRef]
  22. C. Jensen-McMullin, H. P. Lee, and E. R. Lyons, "Demonstration of trapping, motion control, sensing and. fluorescence detection of polystyrene beads in a multi-fiber optical trap," Opt. Exp. 13, 2634-2642 (2005).
    [CrossRef]
  23. M. Ikeda, K. Tanaka, and M. Kittaka, "Tanaka, M. & Shohata, T. Rotational manipulation of a symmetrical plastic micro-object using fiber optic trapping," Opt. Commun. 239, 103-108 (2004).
    [CrossRef]
  24. R. S. Taylor and C. Hantovsky, "Particle trapping in 3-D using a single fiber probe with an annular light. Distribution," Opt. Exp. 11, 2775-2782 (2003).
    [CrossRef]
  25. G. Brambilla and F. Xu, "Adiabatic submicrometric tapers for optical tweezers," Electron. Lett. 43, 204-206 (2007).
    [CrossRef]
  26. Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, "Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application," Opt. Exp. 14, 12510-12516 (2006).
    [CrossRef]
  27. C. Youngchul and D. Nadr, "An assessment of finite difference beam propagation method," IEEE J Quantum Electron. 26, 1335-1338 (1990).
    [CrossRef]
  28. L. B. Yuan, Z. H. Liu, and J. Yang, "Coupling characteristics between single-core fiber and multicore fiber," Opt. Lett. 31, 3237-3239 (2006).
    [CrossRef] [PubMed]
  29. O. Muller, M. Schliwa, and H. Felgner, "Calibration of light forces in optical tweezers," Appl. Opt. 34, 977-980 (1995).
    [CrossRef] [PubMed]
  30. N. Malagnino, G. Pesce, A. Sasso, E. Arimondo, "Measurement of trapping efficiency and stiffness in optical tweezers," Opt. Commun. 214, 15-24 (2002).
    [CrossRef]

2007 (1)

G. Brambilla and F. Xu, "Adiabatic submicrometric tapers for optical tweezers," Electron. Lett. 43, 204-206 (2007).
[CrossRef]

2006 (2)

Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, "Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application," Opt. Exp. 14, 12510-12516 (2006).
[CrossRef]

L. B. Yuan, Z. H. Liu, and J. Yang, "Coupling characteristics between single-core fiber and multicore fiber," Opt. Lett. 31, 3237-3239 (2006).
[CrossRef] [PubMed]

2005 (1)

C. Jensen-McMullin, H. P. Lee, and E. R. Lyons, "Demonstration of trapping, motion control, sensing and. fluorescence detection of polystyrene beads in a multi-fiber optical trap," Opt. Exp. 13, 2634-2642 (2005).
[CrossRef]

2004 (2)

M. Ikeda, K. Tanaka, and M. Kittaka, "Tanaka, M. & Shohata, T. Rotational manipulation of a symmetrical plastic micro-object using fiber optic trapping," Opt. Commun. 239, 103-108 (2004).
[CrossRef]

Z. Hu, J. Wang, and J. Liang, "Manipulation and arrangement of biological and dielectric particles by a. lensed fiber probe," Opt. Exp. 12, 4123-4128 (2004).
[CrossRef]

2003 (2)

D. G. Grier, "A revolution in optical manipulation," Nature 424, 21-27 (2003).
[CrossRef]

R. S. Taylor and C. Hantovsky, "Particle trapping in 3-D using a single fiber probe with an annular light. Distribution," Opt. Exp. 11, 2775-2782 (2003).
[CrossRef]

2002 (3)

N. Malagnino, G. Pesce, A. Sasso, E. Arimondo, "Measurement of trapping efficiency and stiffness in optical tweezers," Opt. Commun. 214, 15-24 (2002).
[CrossRef]

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and enhanced manipulation of 3-dimensional optically trapped structures," Science,  296, 1101-1103 (2002).
[CrossRef] [PubMed]

R. L. Eriksen, P. C. Mogensen, and J. Gluckstad, "Multiple-beam optical tweezers generated by the generalized phase-contrast method," Opt. Lett. 27, 267-269 (2002).
[CrossRef]

2001 (5)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam, " Opt. Commun. 197, 239-245 (2001).
[CrossRef]

W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, "Combined optical tweezers and optical stretcher in microscopy," SPIE 4434, 227-232 (2001).
[CrossRef]

P. Galajda and P. Ormos, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-912 (2001).
[CrossRef] [PubMed]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

2000 (1)

K. Taguchi, K. Atsuta, T. Nakata and M. Ikeda, "Levitation of a microscopic object using plural optical fibers," Opt. Commun. 176, 43-47 (2000).
[CrossRef]

1999 (2)

E. Higurashi, R. Sawada, and T. Ito, "Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light," Phys. Rev. E 59, 3676-3681 (1999).
[CrossRef]

P. Zemanek, A. Jonas, L. Sramek, and M. Liska, "Optical trapping of nanoparticles and microparticles using Gaussian standing wave," Opt. Lett. 24, 1448-1450 (1999).
[CrossRef]

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-359 (1998).
[CrossRef]

1997 (4)

K. Taguchi, H. Ueno, "Hiramatsu, T. & Ikeda, M. Optical trapping of dielectric particle and biological cell using optical fiber," Electron. Lett. 33, 413-414 (1997).
[CrossRef]

K. Taguchi, H. Ueno, and M. Ikeda, "Rotational manipulation of a yeast cell using optical fibers," Electron. Lett. 33, 1249-1250 (1997).
[CrossRef]

S. D. Collins, E. Sidick, A. Knoesen and R.J. Baskin, "Micromachined optical trap for use as a microcytology workstation," SPIE 2978, 69-74 (1997).
[CrossRef]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "The mechanical equivalence of the spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997).
[CrossRef] [PubMed]

1995 (2)

O. Muller, M. Schliwa, and H. Felgner, "Calibration of light forces in optical tweezers," Appl. Opt. 34, 977-980 (1995).
[CrossRef] [PubMed]

E. R. Lyons and G. J. Sonek, "Confinement and bistability in a tapered hemispherical lensed optical fiber trap," Appl. Phys. Lett.,  66, 1584-1586 (1995).
[CrossRef]

1993 (1)

1990 (1)

C. Youngchul and D. Nadr, "An assessment of finite difference beam propagation method," IEEE J Quantum Electron. 26, 1335-1338 (1990).
[CrossRef]

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

1986 (1)

Allen, L.

Arimondo, E.

N. Malagnino, G. Pesce, A. Sasso, E. Arimondo, "Measurement of trapping efficiency and stiffness in optical tweezers," Opt. Commun. 214, 15-24 (2002).
[CrossRef]

Arlt, J.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and enhanced manipulation of 3-dimensional optically trapped structures," Science,  296, 1101-1103 (2002).
[CrossRef] [PubMed]

L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-912 (2001).
[CrossRef] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam, " Opt. Commun. 197, 239-245 (2001).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

Atsuta, K.

K. Taguchi, K. Atsuta, T. Nakata and M. Ikeda, "Levitation of a microscopic object using plural optical fibers," Opt. Commun. 176, 43-47 (2000).
[CrossRef]

Baskin, R.J.

S. D. Collins, E. Sidick, A. Knoesen and R.J. Baskin, "Micromachined optical trap for use as a microcytology workstation," SPIE 2978, 69-74 (1997).
[CrossRef]

Bernet, S.

W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, "Combined optical tweezers and optical stretcher in microscopy," SPIE 4434, 227-232 (2001).
[CrossRef]

Bjorkholm, J. E.

Brambilla, G.

G. Brambilla and F. Xu, "Adiabatic submicrometric tapers for optical tweezers," Electron. Lett. 43, 204-206 (2007).
[CrossRef]

Bryant, P. E.

L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-912 (2001).
[CrossRef] [PubMed]

Chu, S.

Collins, S. D.

S. D. Collins, E. Sidick, A. Knoesen and R.J. Baskin, "Micromachined optical trap for use as a microcytology workstation," SPIE 2978, 69-74 (1997).
[CrossRef]

Constable, A.

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Dholakia, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and enhanced manipulation of 3-dimensional optically trapped structures," Science,  296, 1101-1103 (2002).
[CrossRef] [PubMed]

L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-912 (2001).
[CrossRef] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam, " Opt. Commun. 197, 239-245 (2001).
[CrossRef]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "The mechanical equivalence of the spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997).
[CrossRef] [PubMed]

Dietl, P.

W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, "Combined optical tweezers and optical stretcher in microscopy," SPIE 4434, 227-232 (2001).
[CrossRef]

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

Eriksen, R. L.

Felgner, H.

Frick, M.

W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, "Combined optical tweezers and optical stretcher in microscopy," SPIE 4434, 227-232 (2001).
[CrossRef]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-359 (1998).
[CrossRef]

Galajda, P.

P. Galajda and P. Ormos, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

Garces-Chavez, V.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam, " Opt. Commun. 197, 239-245 (2001).
[CrossRef]

Gluckstad, J.

Grier, D. G.

D. G. Grier, "A revolution in optical manipulation," Nature 424, 21-27 (2003).
[CrossRef]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Guo, C. K.

Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, "Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application," Opt. Exp. 14, 12510-12516 (2006).
[CrossRef]

Haller, T.

W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, "Combined optical tweezers and optical stretcher in microscopy," SPIE 4434, 227-232 (2001).
[CrossRef]

Hantovsky, C.

R. S. Taylor and C. Hantovsky, "Particle trapping in 3-D using a single fiber probe with an annular light. Distribution," Opt. Exp. 11, 2775-2782 (2003).
[CrossRef]

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-359 (1998).
[CrossRef]

Higurashi, E.

E. Higurashi, R. Sawada, and T. Ito, "Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light," Phys. Rev. E 59, 3676-3681 (1999).
[CrossRef]

Hu, Z.

Z. Hu, J. Wang, and J. Liang, "Manipulation and arrangement of biological and dielectric particles by a. lensed fiber probe," Opt. Exp. 12, 4123-4128 (2004).
[CrossRef]

Ikeda, M.

M. Ikeda, K. Tanaka, and M. Kittaka, "Tanaka, M. & Shohata, T. Rotational manipulation of a symmetrical plastic micro-object using fiber optic trapping," Opt. Commun. 239, 103-108 (2004).
[CrossRef]

K. Taguchi, K. Atsuta, T. Nakata and M. Ikeda, "Levitation of a microscopic object using plural optical fibers," Opt. Commun. 176, 43-47 (2000).
[CrossRef]

K. Taguchi, H. Ueno, and M. Ikeda, "Rotational manipulation of a yeast cell using optical fibers," Electron. Lett. 33, 1249-1250 (1997).
[CrossRef]

Ito, T.

E. Higurashi, R. Sawada, and T. Ito, "Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light," Phys. Rev. E 59, 3676-3681 (1999).
[CrossRef]

Jensen-McMullin, C.

C. Jensen-McMullin, H. P. Lee, and E. R. Lyons, "Demonstration of trapping, motion control, sensing and. fluorescence detection of polystyrene beads in a multi-fiber optical trap," Opt. Exp. 13, 2634-2642 (2005).
[CrossRef]

Jonas, A.

Kim, J.

Kittaka, M.

M. Ikeda, K. Tanaka, and M. Kittaka, "Tanaka, M. & Shohata, T. Rotational manipulation of a symmetrical plastic micro-object using fiber optic trapping," Opt. Commun. 239, 103-108 (2004).
[CrossRef]

Knoesen, A.

S. D. Collins, E. Sidick, A. Knoesen and R.J. Baskin, "Micromachined optical trap for use as a microcytology workstation," SPIE 2978, 69-74 (1997).
[CrossRef]

Lee, H. P.

C. Jensen-McMullin, H. P. Lee, and E. R. Lyons, "Demonstration of trapping, motion control, sensing and. fluorescence detection of polystyrene beads in a multi-fiber optical trap," Opt. Exp. 13, 2634-2642 (2005).
[CrossRef]

Liang, J.

Z. Hu, J. Wang, and J. Liang, "Manipulation and arrangement of biological and dielectric particles by a. lensed fiber probe," Opt. Exp. 12, 4123-4128 (2004).
[CrossRef]

Liska, M.

Liu, Z. H.

L. B. Yuan, Z. H. Liu, and J. Yang, "Coupling characteristics between single-core fiber and multicore fiber," Opt. Lett. 31, 3237-3239 (2006).
[CrossRef] [PubMed]

Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, "Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application," Opt. Exp. 14, 12510-12516 (2006).
[CrossRef]

Lyons, E. R.

C. Jensen-McMullin, H. P. Lee, and E. R. Lyons, "Demonstration of trapping, motion control, sensing and. fluorescence detection of polystyrene beads in a multi-fiber optical trap," Opt. Exp. 13, 2634-2642 (2005).
[CrossRef]

E. R. Lyons and G. J. Sonek, "Confinement and bistability in a tapered hemispherical lensed optical fiber trap," Appl. Phys. Lett.,  66, 1584-1586 (1995).
[CrossRef]

MacDonald, M.

L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-912 (2001).
[CrossRef] [PubMed]

MacDonald, M. P.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and enhanced manipulation of 3-dimensional optically trapped structures," Science,  296, 1101-1103 (2002).
[CrossRef] [PubMed]

Malagnino, N.

N. Malagnino, G. Pesce, A. Sasso, E. Arimondo, "Measurement of trapping efficiency and stiffness in optical tweezers," Opt. Commun. 214, 15-24 (2002).
[CrossRef]

Mervis, J.

Mogensen, P. C.

Muller, O.

Nadr, D.

C. Youngchul and D. Nadr, "An assessment of finite difference beam propagation method," IEEE J Quantum Electron. 26, 1335-1338 (1990).
[CrossRef]

Nakata, T.

K. Taguchi, K. Atsuta, T. Nakata and M. Ikeda, "Levitation of a microscopic object using plural optical fibers," Opt. Commun. 176, 43-47 (2000).
[CrossRef]

Nieminen, T. A.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-359 (1998).
[CrossRef]

Ormos, P.

P. Galajda and P. Ormos, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

Padgett, M. J.

Paterson, L.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and enhanced manipulation of 3-dimensional optically trapped structures," Science,  296, 1101-1103 (2002).
[CrossRef] [PubMed]

L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-912 (2001).
[CrossRef] [PubMed]

Pesce, G.

N. Malagnino, G. Pesce, A. Sasso, E. Arimondo, "Measurement of trapping efficiency and stiffness in optical tweezers," Opt. Commun. 214, 15-24 (2002).
[CrossRef]

Prentiss, M.

Ritsch-Marte, M.

W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, "Combined optical tweezers and optical stretcher in microscopy," SPIE 4434, 227-232 (2001).
[CrossRef]

Rubinsztein-Dunlop, H.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-359 (1998).
[CrossRef]

Sasso, A.

N. Malagnino, G. Pesce, A. Sasso, E. Arimondo, "Measurement of trapping efficiency and stiffness in optical tweezers," Opt. Commun. 214, 15-24 (2002).
[CrossRef]

Sawada, R.

E. Higurashi, R. Sawada, and T. Ito, "Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light," Phys. Rev. E 59, 3676-3681 (1999).
[CrossRef]

Schliwa, M.

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Sibbett, W.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and enhanced manipulation of 3-dimensional optically trapped structures," Science,  296, 1101-1103 (2002).
[CrossRef] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam, " Opt. Commun. 197, 239-245 (2001).
[CrossRef]

L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-912 (2001).
[CrossRef] [PubMed]

Sidick, E.

S. D. Collins, E. Sidick, A. Knoesen and R.J. Baskin, "Micromachined optical trap for use as a microcytology workstation," SPIE 2978, 69-74 (1997).
[CrossRef]

Simpson, N. B.

Singer, W.

W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, "Combined optical tweezers and optical stretcher in microscopy," SPIE 4434, 227-232 (2001).
[CrossRef]

Sonek, G. J.

E. R. Lyons and G. J. Sonek, "Confinement and bistability in a tapered hemispherical lensed optical fiber trap," Appl. Phys. Lett.,  66, 1584-1586 (1995).
[CrossRef]

Spalding, G. C.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Sramek, L.

Taguchi, K.

K. Taguchi, K. Atsuta, T. Nakata and M. Ikeda, "Levitation of a microscopic object using plural optical fibers," Opt. Commun. 176, 43-47 (2000).
[CrossRef]

K. Taguchi, H. Ueno, "Hiramatsu, T. & Ikeda, M. Optical trapping of dielectric particle and biological cell using optical fiber," Electron. Lett. 33, 413-414 (1997).
[CrossRef]

K. Taguchi, H. Ueno, and M. Ikeda, "Rotational manipulation of a yeast cell using optical fibers," Electron. Lett. 33, 1249-1250 (1997).
[CrossRef]

Tanaka, K.

M. Ikeda, K. Tanaka, and M. Kittaka, "Tanaka, M. & Shohata, T. Rotational manipulation of a symmetrical plastic micro-object using fiber optic trapping," Opt. Commun. 239, 103-108 (2004).
[CrossRef]

Taylor, R. S.

R. S. Taylor and C. Hantovsky, "Particle trapping in 3-D using a single fiber probe with an annular light. Distribution," Opt. Exp. 11, 2775-2782 (2003).
[CrossRef]

Ueno, H.

K. Taguchi, H. Ueno, and M. Ikeda, "Rotational manipulation of a yeast cell using optical fibers," Electron. Lett. 33, 1249-1250 (1997).
[CrossRef]

K. Taguchi, H. Ueno, "Hiramatsu, T. & Ikeda, M. Optical trapping of dielectric particle and biological cell using optical fiber," Electron. Lett. 33, 413-414 (1997).
[CrossRef]

Volke-Sepulveda, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and enhanced manipulation of 3-dimensional optically trapped structures," Science,  296, 1101-1103 (2002).
[CrossRef] [PubMed]

Wang, J.

Z. Hu, J. Wang, and J. Liang, "Manipulation and arrangement of biological and dielectric particles by a. lensed fiber probe," Opt. Exp. 12, 4123-4128 (2004).
[CrossRef]

Xu, F.

G. Brambilla and F. Xu, "Adiabatic submicrometric tapers for optical tweezers," Electron. Lett. 43, 204-206 (2007).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

Yang, J.

L. B. Yuan, Z. H. Liu, and J. Yang, "Coupling characteristics between single-core fiber and multicore fiber," Opt. Lett. 31, 3237-3239 (2006).
[CrossRef] [PubMed]

Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, "Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application," Opt. Exp. 14, 12510-12516 (2006).
[CrossRef]

Youngchul, C.

C. Youngchul and D. Nadr, "An assessment of finite difference beam propagation method," IEEE J Quantum Electron. 26, 1335-1338 (1990).
[CrossRef]

Yuan, L. B.

Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, "Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application," Opt. Exp. 14, 12510-12516 (2006).
[CrossRef]

L. B. Yuan, Z. H. Liu, and J. Yang, "Coupling characteristics between single-core fiber and multicore fiber," Opt. Lett. 31, 3237-3239 (2006).
[CrossRef] [PubMed]

Zarinetchi, F.

Zemanek, P.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

P. Galajda and P. Ormos, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249-251 (2001).
[CrossRef]

E. R. Lyons and G. J. Sonek, "Confinement and bistability in a tapered hemispherical lensed optical fiber trap," Appl. Phys. Lett.,  66, 1584-1586 (1995).
[CrossRef]

Electron. Lett. (3)

K. Taguchi, H. Ueno, "Hiramatsu, T. & Ikeda, M. Optical trapping of dielectric particle and biological cell using optical fiber," Electron. Lett. 33, 413-414 (1997).
[CrossRef]

K. Taguchi, H. Ueno, and M. Ikeda, "Rotational manipulation of a yeast cell using optical fibers," Electron. Lett. 33, 1249-1250 (1997).
[CrossRef]

G. Brambilla and F. Xu, "Adiabatic submicrometric tapers for optical tweezers," Electron. Lett. 43, 204-206 (2007).
[CrossRef]

IEEE J Quantum Electron. (1)

C. Youngchul and D. Nadr, "An assessment of finite difference beam propagation method," IEEE J Quantum Electron. 26, 1335-1338 (1990).
[CrossRef]

Nature (3)

A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769-771 (1987).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-359 (1998).
[CrossRef]

D. G. Grier, "A revolution in optical manipulation," Nature 424, 21-27 (2003).
[CrossRef]

Opt. Commun. (4)

N. Malagnino, G. Pesce, A. Sasso, E. Arimondo, "Measurement of trapping efficiency and stiffness in optical tweezers," Opt. Commun. 214, 15-24 (2002).
[CrossRef]

K. Taguchi, K. Atsuta, T. Nakata and M. Ikeda, "Levitation of a microscopic object using plural optical fibers," Opt. Commun. 176, 43-47 (2000).
[CrossRef]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam, " Opt. Commun. 197, 239-245 (2001).
[CrossRef]

M. Ikeda, K. Tanaka, and M. Kittaka, "Tanaka, M. & Shohata, T. Rotational manipulation of a symmetrical plastic micro-object using fiber optic trapping," Opt. Commun. 239, 103-108 (2004).
[CrossRef]

Opt. Exp. (4)

R. S. Taylor and C. Hantovsky, "Particle trapping in 3-D using a single fiber probe with an annular light. Distribution," Opt. Exp. 11, 2775-2782 (2003).
[CrossRef]

Z. Hu, J. Wang, and J. Liang, "Manipulation and arrangement of biological and dielectric particles by a. lensed fiber probe," Opt. Exp. 12, 4123-4128 (2004).
[CrossRef]

C. Jensen-McMullin, H. P. Lee, and E. R. Lyons, "Demonstration of trapping, motion control, sensing and. fluorescence detection of polystyrene beads in a multi-fiber optical trap," Opt. Exp. 13, 2634-2642 (2005).
[CrossRef]

Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, "Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application," Opt. Exp. 14, 12510-12516 (2006).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. E (1)

E. Higurashi, R. Sawada, and T. Ito, "Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light," Phys. Rev. E 59, 3676-3681 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Science (2)

L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, "Controlled Rotation of Optically Trapped Microscopic Particles," Science 292, 912-912 (2001).
[CrossRef] [PubMed]

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and enhanced manipulation of 3-dimensional optically trapped structures," Science,  296, 1101-1103 (2002).
[CrossRef] [PubMed]

SPIE (2)

W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, "Combined optical tweezers and optical stretcher in microscopy," SPIE 4434, 227-232 (2001).
[CrossRef]

S. D. Collins, E. Sidick, A. Knoesen and R.J. Baskin, "Micromachined optical trap for use as a microcytology workstation," SPIE 2978, 69-74 (1997).
[CrossRef]

Supplementary Material (1)

» Media 1: MPG (19059 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The abrupt twin-core fiber taper profile and the two beams radiation simulation result by BMP (beam propagation method).

Fig. 2.
Fig. 2.

The configuration of the twin-core fiber optical tweezers.

Fig. 3.
Fig. 3.

The far-field radiation intensity distribution at the tapered twin-core fiber tip with input intensity of the two cores ratio is 1:1.

Fig. 4.
Fig. 4.

The far-field radiation intensity distribution at the tapered twin-core fiber tip with input intensity of the two cores ratio is 1: 3.

Fig. 5.
Fig. 5.

Experimental set-up and working principle of the twin-core fiber optical tweezers.

Fig. 6.
Fig. 6.

Image of the twin-core tapered fiber optical tweezers manufactured by heating and drawing with an abruptly tapered profile tip for trapping small particles.

Fig. 7.
Fig. 7.

Calibration result of optical power vs. the trapping force.

Fig. 8.
Fig. 8.

(19Mb) The real-time movie showing that an elliptic yeast cell was trapped by the twin-core tapered fiber optical tweezers and changing the two beams power ratio can control its orientation, after reducing the optical power then the yeast cell is released. [Media 1]

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P 0 ( r ) = 1 2 π σ e r 2 2 σ 2
R ( z ) = { 1 2 ( R 0 r 0 ) 1 2 ( R 0 + r 0 ) { tanh [ v ( z L 2 ) ] tanh ( v L 2 ) } ,       0 < z < l 0 r 0 r 0 2 ( z l 0 ) 2 , l 0 r 0 z l 0
F = 6 π η r u

Metrics