Abstract

We present a new mathematical technique which can be used to determine the main refractive indices and the birefringence of an anisotropic layer by using a polarizing microscope in conoscopic illumination. The values of the birefringence for the yellow radiation of a Na lamp are determined here for a Carpathian quartz sample, but the technique can also be applied to the study of other uniaxial substances such as liquid crystals, model membranes or biological tissues. The validity of the proposed method was tested by comparing the results with those obtained with a Rayleigh interferometer and by using the technology of channeled spectra.

© 2008 Optical Society of America

1. Introduction

Measurement of optical linear birefringence has been one of the standard tools in the study of anisotropic properties of materials for nearly two centuries [1, 2]. The polarized light is commonly used to determine the double refraction of an optically anisotropic material such as a crystal, organic tissues, strained glasses, polymers, liquid crystals, etc [3].

The polarizing microscope offers the possibility to analyze an anisotropic layer in divergent polarized light beam [3, 4]. Radiations crossing the plan parallel plate through the same geometrical way emerge from the plate with the same phase difference between the extraordinary and ordinary radiation and determine the same illumination in the focal plane of the microscope objective. Radiations with identical values of pathway between the ordinary and extraordinary components determine the appearance of isochromates [4, 5].

Classical crystal optics has recently undergone a renaissance as developments in optical microscopy and polarimetry, enabled in part by sensitive imaging CCD cameras and personal computers now permit the analytical separation of various optical effects that are otherwise convolved in polarized light micrographs [4]. The new microscopic (Metripol Technique, for example [5]) and polarimetric techniques are applied to problems of crystallographic twinning, phase transformations, stress birefringence, symmetry reduction, and the design of new crystalline materials [6].

The mathematical techniques devoted to the polarizing microscopy are usually based on simplified equations obtained by making certain approximations resulting from different acceptable hypothesis [15].

In this paper we develop a new mathematical technique in order to determine with a good precision the main refractive indices and the birefringence of the uniaxial anisotropic plate cut perpendicular to optical axis by using a polarizing microscope in conoscopic illumination. We are interested in this technique because we intend to use it for studying the optical properties of some nematic liquid crystals with a homeotropic orientation of the molecules.

2. Theoretical background

Let us consider the perpendicular directions Ox and Oy (which can coincide with the principal directions of the anisotropic layer) and the transmission directions P and A of polarizer and analyzer, respectively. The angles α and β orient the transmission directions of the polarizers relatively to the Ox direction (Fig. 1).

 

Fig. 1. Electric field intensity components on the transmission directions of the polarizers.

Download Full Size | PPT Slide | PDF

Let be EP the amplitude of the wave emerging from the polarizer P. Its components Ex and Ey on the axes Ox and Oy of the Oxyz reference system of coordinates, attached to the anisotropic plate, are [711]:

Ex=EPcosβ;Ey=EPsinβ

Only the components Ex,A and Ey,A can pass after the analyzer A:

Ex,A=EP·cosα·cosβ;Ey,A=EP·sinα·sinβ

Let us suppose that the substance placed between P and A is a transparent layer of thickness h. It introduces a phase difference ΔΨ between the two components of the electric field intensity Ex and Ey. The two components recompose at the analyzer exit and give for the flux density [7, 910] the following expression:

ϕA=ϕPcos2αcos2β+sin2αsin2β+sin2αsin2βcos2cos2βcosΔΨ

In Eq. (3), φ P signifies the flux density after the polarizer P. When one uses crossed polarizers, one can consider: β=π/4 and α=3π/4. In these conditions one obtains a simplified equation for the flux density after the analyzer [910]:

ϕA=ϕPcos2ΔΨ2

From Eq. (4) it results that one can obtain maxima and minima of flux density in the conditions expressed by Eqs. (5) and (6), respectively:

ΔΨ=(2k+1)π;k=0,1,2,3,;ϕA=0
ΔΨ=2kπ;k=0,1,2,3,;ϕA=ϕP

Let also suppose that the anisotropic substance placed between the crossed polarizers is an anisotropic uniax plate cut perpendicular to optical axis. The interference figure obtained in the focal plane of the polarizing microscope depends on the phase difference introduced by the anisotropic plate between the ordinary and extraordinary components.

In Fig. 2(a) the ordinary and the extraordinary rays rising from the incident unpolarized ray at incidence ik are shown. The pathway difference introduced by the anisotropic plate between the ordinary and extraordinary components is the same for all directions having the same incidence angle on the plate surface.

 

Fig. 2. Ordinary and extraordinary rays in the anisotropic plate crossed perpendicular to the optical axis.

Download Full Size | PPT Slide | PDF

The pathway difference between the ordinary and extraordinary rays, introduced by the anisotropic plate, having the thickness h, can be expressed as:

(Δ)=(IA)+(AC)(IB)

From Fig. 2(a) one can write:

(IA)=nefhcosrefk,(IB)=nohcos⁡rokand(AC)=ABsinik

The angles refk and rok can be expressed by using the refraction law in the incidence point I from the separation surface ∑1 between air and anisotropic layer:

1·sinik=nosinrok
1·sinik=nefsinrefk

By using the Eqs. (7), (8) and (9) it results the pathway difference between the ordinary and extraordinary rays:

(Δ)=h(nefcosrefknocosrok)=h(nef2sin2ikno2sin2ik)

It is important to notice here that the refractive index for the extraordinary ray of the anisotropic plate, nef, depends on the incidence angle ik [1012]:

nef=nenone2+(no2ne2)sin⁡2refknef2=no2+ne2no2ne2sin2ik

By using the Eq. (10), the Eq. (11) and the condition (6) it results:

(Δ)h=(no2no2ne2sin2ikno2sin2ik)=kλo2h;k=0,1,2,3,

The objective of the polarizing microscope and its image focal plane are shown in Fig. 2(b). For two incidence angles i k and ik+1, corresponding to two consecutive maxima, the radii of the two rings are Rk and Rk+1which are measurable in our experiment. The angle i k can be determined by the radius of the ring of order k, Rk, and the focal distance of the objective (Fig. 2(c)).

The Eq. (13) permits the computation of main refractive indices (ne, no) and the birefringence by using the experimental results for two rings, when the thickness of the anisotropic plate is known or for three rings, when the thickness of the anisotropic plate is unknown.

If the thickness of the anisotropic plate is known, then the main refractive indices (ne and no) can be determined by solving the following system of equations:

{no2no2ne2sin2ikno2sin2ik=kλo2h(k=1,2,3,)no2no2ne2sin2imno2sin2im=mλo2h(m=1,2,3,;mk)

If the radii of the rings are measured with enough precision, the values of the refractive indices can be estimated with four decimals.

The birefringence of the uniaxial crystal can be estimated by the difference between its two main refractive indices.

3. Experimental set-up

Figure 3 shows a schematic illustration of a polarizing light microscope with the minimal number of components. The condenser C makes the image of the source S on the anisotropic plate and the rays leaving the substage lens form an inverted cone whose point (focus) is at the sample. In this way a large angular field is incident on the anisotropic plate (conoscopic illumination). The anisotropic plate A.L. is placed on the microscope stage, between the polarizer P and the analyzer A, and it may be rotated so polarized light will vibrate along different directions within the crystal. The interference fringes are observed near the focal plane of the objective Ob by using an ocular Oc. The observations can be made in black field, when the polarizer and the analyzer are crossed, or in illuminated field, when the polarizer and the analyzer have parallel transmission directions.

 

Fig. 3. Simplified optical schema of a polarizing microscope with a webcam

Download Full Size | PPT Slide | PDF

The isochromates, characterized by a constant phase difference between the two components, are concentric circles and their centers coincide with the intersection point of the optical axis of the anisotropic plate and the image focal plane of the objective. When the polarizers are crossed, a black cross is superposed on the rings (Figs. 4). The image of the black cross does not change its aspect when the microscope table is rotated around its symmetry axis because the optical axis of the anisotropic plate has the same direction with the symmetry axis of the microscope tube.

The obtained images can be captured and transferred to the computer by using a webcam (Fig. 3), in our case a Creative Web camera LIVE 6L (sensor CMOS, video 800x600px, photo 1.3mp, interface USB [13]). The camera objective was fixed at the microscope ocular, coaxially with the ocular.

The radius of the k-ring was measured, after the calibration of the webcam, by using the GrabIt! application.

4. Results and discussions

The measurements were made in yellow radiation (λo=589.3 nm) emitted by a Na lamp. The obtained results for an angle e of 45o between the transmission directions of the polarizer and the principal axes of the anisotropic layer are given in Fig. 4 for various thickness of Carpathians quartz.

 

Fig. 4. Interference rings for some Carpathians quartz plates.

Download Full Size | PPT Slide | PDF

From the Fig. 4 one can see that the number of the isochromates increases with the thickness of the anisotropic layer.

Tables Icon

Table 1. Rings radii and corresponding sin of the incidence angle.

The data from Table 2 were computed by solving the equation system (14) by using the Scientific WorkPlace v.5.5 application [14].

Tables Icon

Table 2. Refractive indices and the birefringence values for quartz crystal estimated with Eq. (14).

From the Table 2 it results that: n̄e≅1.5549, n̄o≅1.5459 and Δn¯=neno0.009.

Comparative data regarding the main refractive indices and birefringence obtained in divergent beam by this new method and by two methods in parallel beams (using a Rayleigh interferometer and by channeled spectra technology) are listed in Table 3.

The method using the channeled spectra [15, 16] of the anisotropic plate permits only the birefringence determination.

Tables Icon

Table 3. Main refractive indices and birefringence of Carpathian Quartz determined by various methods.

From our personal data, the values obtained by this method are in good accordance with those obtained by using a Rayleigh interferometer in polarized light [17, 18] or by using the channeled spectra obtained with special devices attached to a spectrophotometer and with the data existing in literature [19, 20].

5. Conclusions

In this paper we have shown the possibility of using the equation system (14) in order to determine, with a good precision, the main refractive indices and the birefringence of a uniaxial layer when the thickness of the anisotropic plate is known by using the conoscopic images. The sign of birefringence permits to obtain information about the optical sign of the anisotropic layer.

The proposed technique can also be used to the study of the optical properties of the uniaxial liquid crystals or other uniaxial substances or systems.

References and links

1. L. A. Pajdzik and A. M. Glazer, “Three-dimensional birefringence imaging with a microscope tilting-stage. I. Uniaxial crystals,” J. Appl. Cryst. 39, 326–337 (2006). [CrossRef]  

2. L. A. Pajdzik and A. M. Glazer, “Three-dimensional birefringence imaging with a microscope tilting stage. II. Biaxial crystals,” J. Appl. Cryst. 39, 856–870 (2006). [CrossRef]  

3. M. A. Geday, W. Kaminsky, J. G. Lewis, and A. M. Glazer, “Images of absolute retardance L·Δn, using the rotating polariser method,” J. Microsc. 198, 1–9 (2000). [CrossRef]   [PubMed]  

4. W. Kaminsky, K. Claborn, and B. Kahr, “Polarimetric imaging of crystals,” Chem. Soc. Rev. 33, 514–525 (2004). [CrossRef]   [PubMed]  

5. Birefringence imaging system www.oxfordcryosystems.co.uk/downloads/Metripol brochure.pdf.

6. A. Echalier, R. L. Glazer, V. Fülöp, and M. A. Geday, “Assessing crystallization droplets using birefringence,” Acta Cryst. D60, 696–702 (2004).

7. M. Delibaş and D. O. Dorohoi, Practicum in Optics (in Romanian) (Ed. Univ. “Al. I. Cuza”, Iaşi, 1999).

8. G. Cone, Optics of anisotropic media (in Romanina) (Ed. Tehnica, Bucureşti, 1990).

9. D. O. Dorohoi, Optics (in Romanian) (Ed. “Şt. Procopiu”, Iaşi, 1995).

10. V. Pop, Bases of Optics (in Romanian, (Ed. Univ. “Al. I. Cuza”, Iaşi, 1988).

11. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

12. L. Dumitraşcu, I. Dumitraşcu, D. O. Dorohoi, D. Dimitriu, M. Aflori, and G. Apreutesei, Complementary Physics for PHD students (in Romanian), vol. I, (Ed. TehnoPress, Iaşi, 2007).

13. http://www.creative.com.

14. http://www.mackichan.com.

15. V. Pop, D.O. Dorohoi, and E. Cringeanu, “A New method for determining birefringence dispersion”, J. Macromol. Sci. Phys. B33, 373–385 (1994).

16. D.O. Dorohoi and M. Postolache, “The birefringence dispersion of poly-(phenyl) methacrylic ester of cetyl oxy benzoic acid, determined from channeled spectra”, J. Macromol. Sci. Phys. 40, 239–249 (2001). [CrossRef]  

17. I. Dumitrascu, L. Dumitrascu, and D. O. Dorohoi, “The influence of the external field on the birefringence of the nematic liquid crystalline layer,” J. Optoelectron. Adv. M. 8, 1028–1032 (2006).

18. I. Diaconu, N. M. Puica, D. O. Dorohoi, and M. Aflori, “Birefringence dispersion of N-(4-methoxybenzilidene-4-butylaniline (MBBA) determined from channeled spectra,” Spetrochim. Acta A 68, 536–541 (2007). [CrossRef]  

19. D. A. M. Androne, L. Dumitrascu, I. Horga, and D. O. Dorohoi, “Main refractive indices and birefringence of feldspars from Romanian pergmatites,” Bull. Politechnical Inst. Iasi 55, 137–141 (2006).

20. D. M. A. Androne, D. O. Dorohoi, and D. Timpu, “Physical methods of identification of the feldspars from granite pergmatites,” Romanian J. Phys. 53, 263–269 (2008).

References

  • View by:
  • |
  • |
  • |

  1. L. A. Pajdzik and A. M. Glazer, “Three-dimensional birefringence imaging with a microscope tilting-stage. I. Uniaxial crystals,” J. Appl. Cryst. 39, 326–337 (2006).
    [Crossref]
  2. L. A. Pajdzik and A. M. Glazer, “Three-dimensional birefringence imaging with a microscope tilting stage. II. Biaxial crystals,” J. Appl. Cryst. 39, 856–870 (2006).
    [Crossref]
  3. M. A. Geday, W. Kaminsky, J. G. Lewis, and A. M. Glazer, “Images of absolute retardance L·Δn, using the rotating polariser method,” J. Microsc. 198, 1–9 (2000).
    [Crossref] [PubMed]
  4. W. Kaminsky, K. Claborn, and B. Kahr, “Polarimetric imaging of crystals,” Chem. Soc. Rev. 33, 514–525 (2004).
    [Crossref] [PubMed]
  5. Birefringence imaging system www.oxfordcryosystems.co.uk/downloads/Metripol brochure.pdf.
  6. A. Echalier, R. L. Glazer, V. Fülöp, and M. A. Geday, “Assessing crystallization droplets using birefringence,” Acta Cryst. D60, 696–702 (2004).
  7. M. Delibaş and D. O. Dorohoi, Practicum in Optics (in Romanian) (Ed. Univ. “Al. I. Cuza”, Iaşi, 1999).
  8. G. Cone, Optics of anisotropic media (in Romanina) (Ed. Tehnica, Bucureşti, 1990).
  9. D. O. Dorohoi, Optics (in Romanian) (Ed. “Şt. Procopiu”, Iaşi, 1995).
  10. V. Pop, Bases of Optics (in Romanian, (Ed. Univ. “Al. I. Cuza”, Iaşi, 1988).
  11. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  12. L. Dumitraşcu, I. Dumitraşcu, D. O. Dorohoi, D. Dimitriu, M. Aflori, and G. Apreutesei, Complementary Physics for PHD students (in Romanian), vol. I, (Ed. TehnoPress, Iaşi, 2007).
  13. http://www.creative.com.
  14. http://www.mackichan.com.
  15. V. Pop, D.O. Dorohoi, and E. Cringeanu, “A New method for determining birefringence dispersion”, J. Macromol. Sci. Phys. B33, 373–385 (1994).
  16. D.O. Dorohoi and M. Postolache, “The birefringence dispersion of poly-(phenyl) methacrylic ester of cetyl oxy benzoic acid, determined from channeled spectra”, J. Macromol. Sci. Phys. 40, 239–249 (2001).
    [Crossref]
  17. I. Dumitrascu, L. Dumitrascu, and D. O. Dorohoi, “The influence of the external field on the birefringence of the nematic liquid crystalline layer,” J. Optoelectron. Adv. M. 8, 1028–1032 (2006).
  18. I. Diaconu, N. M. Puica, D. O. Dorohoi, and M. Aflori, “Birefringence dispersion of N-(4-methoxybenzilidene-4-butylaniline (MBBA) determined from channeled spectra,” Spetrochim. Acta A 68, 536–541 (2007).
    [Crossref]
  19. D. A. M. Androne, L. Dumitrascu, I. Horga, and D. O. Dorohoi, “Main refractive indices and birefringence of feldspars from Romanian pergmatites,” Bull. Politechnical Inst. Iasi 55, 137–141 (2006).
  20. D. M. A. Androne, D. O. Dorohoi, and D. Timpu, “Physical methods of identification of the feldspars from granite pergmatites,” Romanian J. Phys. 53, 263–269 (2008).

2008 (1)

D. M. A. Androne, D. O. Dorohoi, and D. Timpu, “Physical methods of identification of the feldspars from granite pergmatites,” Romanian J. Phys. 53, 263–269 (2008).

2007 (1)

I. Diaconu, N. M. Puica, D. O. Dorohoi, and M. Aflori, “Birefringence dispersion of N-(4-methoxybenzilidene-4-butylaniline (MBBA) determined from channeled spectra,” Spetrochim. Acta A 68, 536–541 (2007).
[Crossref]

2006 (4)

D. A. M. Androne, L. Dumitrascu, I. Horga, and D. O. Dorohoi, “Main refractive indices and birefringence of feldspars from Romanian pergmatites,” Bull. Politechnical Inst. Iasi 55, 137–141 (2006).

I. Dumitrascu, L. Dumitrascu, and D. O. Dorohoi, “The influence of the external field on the birefringence of the nematic liquid crystalline layer,” J. Optoelectron. Adv. M. 8, 1028–1032 (2006).

L. A. Pajdzik and A. M. Glazer, “Three-dimensional birefringence imaging with a microscope tilting-stage. I. Uniaxial crystals,” J. Appl. Cryst. 39, 326–337 (2006).
[Crossref]

L. A. Pajdzik and A. M. Glazer, “Three-dimensional birefringence imaging with a microscope tilting stage. II. Biaxial crystals,” J. Appl. Cryst. 39, 856–870 (2006).
[Crossref]

2004 (2)

W. Kaminsky, K. Claborn, and B. Kahr, “Polarimetric imaging of crystals,” Chem. Soc. Rev. 33, 514–525 (2004).
[Crossref] [PubMed]

A. Echalier, R. L. Glazer, V. Fülöp, and M. A. Geday, “Assessing crystallization droplets using birefringence,” Acta Cryst. D60, 696–702 (2004).

2001 (1)

D.O. Dorohoi and M. Postolache, “The birefringence dispersion of poly-(phenyl) methacrylic ester of cetyl oxy benzoic acid, determined from channeled spectra”, J. Macromol. Sci. Phys. 40, 239–249 (2001).
[Crossref]

2000 (1)

M. A. Geday, W. Kaminsky, J. G. Lewis, and A. M. Glazer, “Images of absolute retardance L·Δn, using the rotating polariser method,” J. Microsc. 198, 1–9 (2000).
[Crossref] [PubMed]

1994 (1)

V. Pop, D.O. Dorohoi, and E. Cringeanu, “A New method for determining birefringence dispersion”, J. Macromol. Sci. Phys. B33, 373–385 (1994).

Aflori, M.

I. Diaconu, N. M. Puica, D. O. Dorohoi, and M. Aflori, “Birefringence dispersion of N-(4-methoxybenzilidene-4-butylaniline (MBBA) determined from channeled spectra,” Spetrochim. Acta A 68, 536–541 (2007).
[Crossref]

L. Dumitraşcu, I. Dumitraşcu, D. O. Dorohoi, D. Dimitriu, M. Aflori, and G. Apreutesei, Complementary Physics for PHD students (in Romanian), vol. I, (Ed. TehnoPress, Iaşi, 2007).

Androne, D. A. M.

D. A. M. Androne, L. Dumitrascu, I. Horga, and D. O. Dorohoi, “Main refractive indices and birefringence of feldspars from Romanian pergmatites,” Bull. Politechnical Inst. Iasi 55, 137–141 (2006).

Androne, D. M. A.

D. M. A. Androne, D. O. Dorohoi, and D. Timpu, “Physical methods of identification of the feldspars from granite pergmatites,” Romanian J. Phys. 53, 263–269 (2008).

Apreutesei, G.

L. Dumitraşcu, I. Dumitraşcu, D. O. Dorohoi, D. Dimitriu, M. Aflori, and G. Apreutesei, Complementary Physics for PHD students (in Romanian), vol. I, (Ed. TehnoPress, Iaşi, 2007).

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Claborn, K.

W. Kaminsky, K. Claborn, and B. Kahr, “Polarimetric imaging of crystals,” Chem. Soc. Rev. 33, 514–525 (2004).
[Crossref] [PubMed]

Cone, G.

G. Cone, Optics of anisotropic media (in Romanina) (Ed. Tehnica, Bucureşti, 1990).

Cringeanu, E.

V. Pop, D.O. Dorohoi, and E. Cringeanu, “A New method for determining birefringence dispersion”, J. Macromol. Sci. Phys. B33, 373–385 (1994).

Delibas, M.

M. Delibaş and D. O. Dorohoi, Practicum in Optics (in Romanian) (Ed. Univ. “Al. I. Cuza”, Iaşi, 1999).

Diaconu, I.

I. Diaconu, N. M. Puica, D. O. Dorohoi, and M. Aflori, “Birefringence dispersion of N-(4-methoxybenzilidene-4-butylaniline (MBBA) determined from channeled spectra,” Spetrochim. Acta A 68, 536–541 (2007).
[Crossref]

Dimitriu, D.

L. Dumitraşcu, I. Dumitraşcu, D. O. Dorohoi, D. Dimitriu, M. Aflori, and G. Apreutesei, Complementary Physics for PHD students (in Romanian), vol. I, (Ed. TehnoPress, Iaşi, 2007).

Dorohoi, D. O.

D. M. A. Androne, D. O. Dorohoi, and D. Timpu, “Physical methods of identification of the feldspars from granite pergmatites,” Romanian J. Phys. 53, 263–269 (2008).

I. Diaconu, N. M. Puica, D. O. Dorohoi, and M. Aflori, “Birefringence dispersion of N-(4-methoxybenzilidene-4-butylaniline (MBBA) determined from channeled spectra,” Spetrochim. Acta A 68, 536–541 (2007).
[Crossref]

D. A. M. Androne, L. Dumitrascu, I. Horga, and D. O. Dorohoi, “Main refractive indices and birefringence of feldspars from Romanian pergmatites,” Bull. Politechnical Inst. Iasi 55, 137–141 (2006).

I. Dumitrascu, L. Dumitrascu, and D. O. Dorohoi, “The influence of the external field on the birefringence of the nematic liquid crystalline layer,” J. Optoelectron. Adv. M. 8, 1028–1032 (2006).

L. Dumitraşcu, I. Dumitraşcu, D. O. Dorohoi, D. Dimitriu, M. Aflori, and G. Apreutesei, Complementary Physics for PHD students (in Romanian), vol. I, (Ed. TehnoPress, Iaşi, 2007).

D. O. Dorohoi, Optics (in Romanian) (Ed. “Şt. Procopiu”, Iaşi, 1995).

M. Delibaş and D. O. Dorohoi, Practicum in Optics (in Romanian) (Ed. Univ. “Al. I. Cuza”, Iaşi, 1999).

Dorohoi, D.O.

D.O. Dorohoi and M. Postolache, “The birefringence dispersion of poly-(phenyl) methacrylic ester of cetyl oxy benzoic acid, determined from channeled spectra”, J. Macromol. Sci. Phys. 40, 239–249 (2001).
[Crossref]

V. Pop, D.O. Dorohoi, and E. Cringeanu, “A New method for determining birefringence dispersion”, J. Macromol. Sci. Phys. B33, 373–385 (1994).

Dumitrascu, I.

I. Dumitrascu, L. Dumitrascu, and D. O. Dorohoi, “The influence of the external field on the birefringence of the nematic liquid crystalline layer,” J. Optoelectron. Adv. M. 8, 1028–1032 (2006).

L. Dumitraşcu, I. Dumitraşcu, D. O. Dorohoi, D. Dimitriu, M. Aflori, and G. Apreutesei, Complementary Physics for PHD students (in Romanian), vol. I, (Ed. TehnoPress, Iaşi, 2007).

Dumitrascu, L.

I. Dumitrascu, L. Dumitrascu, and D. O. Dorohoi, “The influence of the external field on the birefringence of the nematic liquid crystalline layer,” J. Optoelectron. Adv. M. 8, 1028–1032 (2006).

D. A. M. Androne, L. Dumitrascu, I. Horga, and D. O. Dorohoi, “Main refractive indices and birefringence of feldspars from Romanian pergmatites,” Bull. Politechnical Inst. Iasi 55, 137–141 (2006).

L. Dumitraşcu, I. Dumitraşcu, D. O. Dorohoi, D. Dimitriu, M. Aflori, and G. Apreutesei, Complementary Physics for PHD students (in Romanian), vol. I, (Ed. TehnoPress, Iaşi, 2007).

Echalier, A.

A. Echalier, R. L. Glazer, V. Fülöp, and M. A. Geday, “Assessing crystallization droplets using birefringence,” Acta Cryst. D60, 696–702 (2004).

Fülöp, V.

A. Echalier, R. L. Glazer, V. Fülöp, and M. A. Geday, “Assessing crystallization droplets using birefringence,” Acta Cryst. D60, 696–702 (2004).

Geday, M. A.

A. Echalier, R. L. Glazer, V. Fülöp, and M. A. Geday, “Assessing crystallization droplets using birefringence,” Acta Cryst. D60, 696–702 (2004).

M. A. Geday, W. Kaminsky, J. G. Lewis, and A. M. Glazer, “Images of absolute retardance L·Δn, using the rotating polariser method,” J. Microsc. 198, 1–9 (2000).
[Crossref] [PubMed]

Glazer, A. M.

L. A. Pajdzik and A. M. Glazer, “Three-dimensional birefringence imaging with a microscope tilting-stage. I. Uniaxial crystals,” J. Appl. Cryst. 39, 326–337 (2006).
[Crossref]

L. A. Pajdzik and A. M. Glazer, “Three-dimensional birefringence imaging with a microscope tilting stage. II. Biaxial crystals,” J. Appl. Cryst. 39, 856–870 (2006).
[Crossref]

M. A. Geday, W. Kaminsky, J. G. Lewis, and A. M. Glazer, “Images of absolute retardance L·Δn, using the rotating polariser method,” J. Microsc. 198, 1–9 (2000).
[Crossref] [PubMed]

Glazer, R. L.

A. Echalier, R. L. Glazer, V. Fülöp, and M. A. Geday, “Assessing crystallization droplets using birefringence,” Acta Cryst. D60, 696–702 (2004).

Horga, I.

D. A. M. Androne, L. Dumitrascu, I. Horga, and D. O. Dorohoi, “Main refractive indices and birefringence of feldspars from Romanian pergmatites,” Bull. Politechnical Inst. Iasi 55, 137–141 (2006).

Kahr, B.

W. Kaminsky, K. Claborn, and B. Kahr, “Polarimetric imaging of crystals,” Chem. Soc. Rev. 33, 514–525 (2004).
[Crossref] [PubMed]

Kaminsky, W.

W. Kaminsky, K. Claborn, and B. Kahr, “Polarimetric imaging of crystals,” Chem. Soc. Rev. 33, 514–525 (2004).
[Crossref] [PubMed]

M. A. Geday, W. Kaminsky, J. G. Lewis, and A. M. Glazer, “Images of absolute retardance L·Δn, using the rotating polariser method,” J. Microsc. 198, 1–9 (2000).
[Crossref] [PubMed]

Lewis, J. G.

M. A. Geday, W. Kaminsky, J. G. Lewis, and A. M. Glazer, “Images of absolute retardance L·Δn, using the rotating polariser method,” J. Microsc. 198, 1–9 (2000).
[Crossref] [PubMed]

Pajdzik, L. A.

L. A. Pajdzik and A. M. Glazer, “Three-dimensional birefringence imaging with a microscope tilting-stage. I. Uniaxial crystals,” J. Appl. Cryst. 39, 326–337 (2006).
[Crossref]

L. A. Pajdzik and A. M. Glazer, “Three-dimensional birefringence imaging with a microscope tilting stage. II. Biaxial crystals,” J. Appl. Cryst. 39, 856–870 (2006).
[Crossref]

Pop, V.

V. Pop, D.O. Dorohoi, and E. Cringeanu, “A New method for determining birefringence dispersion”, J. Macromol. Sci. Phys. B33, 373–385 (1994).

V. Pop, Bases of Optics (in Romanian, (Ed. Univ. “Al. I. Cuza”, Iaşi, 1988).

Postolache, M.

D.O. Dorohoi and M. Postolache, “The birefringence dispersion of poly-(phenyl) methacrylic ester of cetyl oxy benzoic acid, determined from channeled spectra”, J. Macromol. Sci. Phys. 40, 239–249 (2001).
[Crossref]

Puica, N. M.

I. Diaconu, N. M. Puica, D. O. Dorohoi, and M. Aflori, “Birefringence dispersion of N-(4-methoxybenzilidene-4-butylaniline (MBBA) determined from channeled spectra,” Spetrochim. Acta A 68, 536–541 (2007).
[Crossref]

Timpu, D.

D. M. A. Androne, D. O. Dorohoi, and D. Timpu, “Physical methods of identification of the feldspars from granite pergmatites,” Romanian J. Phys. 53, 263–269 (2008).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Acta Cryst. (1)

A. Echalier, R. L. Glazer, V. Fülöp, and M. A. Geday, “Assessing crystallization droplets using birefringence,” Acta Cryst. D60, 696–702 (2004).

Bull. Politechnical Inst. Iasi (1)

D. A. M. Androne, L. Dumitrascu, I. Horga, and D. O. Dorohoi, “Main refractive indices and birefringence of feldspars from Romanian pergmatites,” Bull. Politechnical Inst. Iasi 55, 137–141 (2006).

Chem. Soc. Rev. (1)

W. Kaminsky, K. Claborn, and B. Kahr, “Polarimetric imaging of crystals,” Chem. Soc. Rev. 33, 514–525 (2004).
[Crossref] [PubMed]

J. Appl. Cryst. (2)

L. A. Pajdzik and A. M. Glazer, “Three-dimensional birefringence imaging with a microscope tilting-stage. I. Uniaxial crystals,” J. Appl. Cryst. 39, 326–337 (2006).
[Crossref]

L. A. Pajdzik and A. M. Glazer, “Three-dimensional birefringence imaging with a microscope tilting stage. II. Biaxial crystals,” J. Appl. Cryst. 39, 856–870 (2006).
[Crossref]

J. Macromol. Sci. Phys. (2)

V. Pop, D.O. Dorohoi, and E. Cringeanu, “A New method for determining birefringence dispersion”, J. Macromol. Sci. Phys. B33, 373–385 (1994).

D.O. Dorohoi and M. Postolache, “The birefringence dispersion of poly-(phenyl) methacrylic ester of cetyl oxy benzoic acid, determined from channeled spectra”, J. Macromol. Sci. Phys. 40, 239–249 (2001).
[Crossref]

J. Microsc. (1)

M. A. Geday, W. Kaminsky, J. G. Lewis, and A. M. Glazer, “Images of absolute retardance L·Δn, using the rotating polariser method,” J. Microsc. 198, 1–9 (2000).
[Crossref] [PubMed]

J. Optoelectron. Adv. M. (1)

I. Dumitrascu, L. Dumitrascu, and D. O. Dorohoi, “The influence of the external field on the birefringence of the nematic liquid crystalline layer,” J. Optoelectron. Adv. M. 8, 1028–1032 (2006).

Romanian J. Phys. (1)

D. M. A. Androne, D. O. Dorohoi, and D. Timpu, “Physical methods of identification of the feldspars from granite pergmatites,” Romanian J. Phys. 53, 263–269 (2008).

Spetrochim. Acta A (1)

I. Diaconu, N. M. Puica, D. O. Dorohoi, and M. Aflori, “Birefringence dispersion of N-(4-methoxybenzilidene-4-butylaniline (MBBA) determined from channeled spectra,” Spetrochim. Acta A 68, 536–541 (2007).
[Crossref]

Other (9)

Birefringence imaging system www.oxfordcryosystems.co.uk/downloads/Metripol brochure.pdf.

M. Delibaş and D. O. Dorohoi, Practicum in Optics (in Romanian) (Ed. Univ. “Al. I. Cuza”, Iaşi, 1999).

G. Cone, Optics of anisotropic media (in Romanina) (Ed. Tehnica, Bucureşti, 1990).

D. O. Dorohoi, Optics (in Romanian) (Ed. “Şt. Procopiu”, Iaşi, 1995).

V. Pop, Bases of Optics (in Romanian, (Ed. Univ. “Al. I. Cuza”, Iaşi, 1988).

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

L. Dumitraşcu, I. Dumitraşcu, D. O. Dorohoi, D. Dimitriu, M. Aflori, and G. Apreutesei, Complementary Physics for PHD students (in Romanian), vol. I, (Ed. TehnoPress, Iaşi, 2007).

http://www.creative.com.

http://www.mackichan.com.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Electric field intensity components on the transmission directions of the polarizers.

Fig. 2.
Fig. 2.

Ordinary and extraordinary rays in the anisotropic plate crossed perpendicular to the optical axis.

Fig. 3.
Fig. 3.

Simplified optical schema of a polarizing microscope with a webcam

Fig. 4.
Fig. 4.

Interference rings for some Carpathians quartz plates.

Tables (3)

Tables Icon

Table 1. Rings radii and corresponding sin of the incidence angle.

Tables Icon

Table 2. Refractive indices and the birefringence values for quartz crystal estimated with Eq. (14).

Tables Icon

Table 3. Main refractive indices and birefringence of Carpathian Quartz determined by various methods.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E x = E P cos β ; E y = E P sin β
E x , A = E P · cos α · cos β ; E y , A = E P · sin α · sin β
ϕ A = ϕ P cos 2 α cos 2 β + sin 2 α sin 2 β + sin 2 α sin 2 β cos 2 cos 2 β cos Δ Ψ
ϕ A = ϕ P cos 2 ΔΨ 2
ΔΨ = ( 2 k + 1 ) π ; k = 0 , 1 , 2 , 3 , ; ϕ A = 0
ΔΨ = 2 k π ; k = 0 , 1 , 2 , 3 , ; ϕ A = ϕ P
( Δ ) = ( IA ) + ( AC ) ( IB )
( IA ) = n ef h cos r efk , ( IB ) = n o h cos⁡ r ok and ( AC ) = AB sin i k
1 · sin i k = n o sin r ok
1 · sin i k = n ef sin r efk
( Δ ) = h ( n ef cos r efk n o cos r ok ) = h ( n ef 2 sin 2 i k n o 2 sin 2 i k )
n ef = n e n o n e 2 + ( n o 2 n e 2 ) sin⁡ 2 r efk n ef 2 = n o 2 + n e 2 n o 2 n e 2 sin 2 i k
( Δ ) h = ( n o 2 n o 2 n e 2 sin 2 i k n o 2 sin 2 i k ) = k λ o 2 h ; k = 0 , 1 , 2 , 3 ,
{ n o 2 n o 2 n e 2 sin 2 i k n o 2 sin 2 i k = k λ o 2 h ( k = 1 , 2 , 3 , ) n o 2 n o 2 n e 2 sin 2 i m n o 2 sin 2 i m = m λ o 2 h ( m = 1 , 2 , 3 , ; m k )

Metrics