Abstract

The white light-emitting diode (WLED) is a state-of-the-art solid state technology, which has replaced conventional lighting systems due to its reduced energy consumption, its reliability, and long life. However, the WLED presents acute challenges in device engineering, due to its lack of color purity, efficacy, and thermal stability of the lighting devices. The prime cause for inadequacies in color purity and luminous efficiency is the spectral overlapping of red components with yellow/green emissions when generating white light by pumping a blue InGaN chip with yellow YAG:Ce3+ phosphor, where red phosphor is included, to compensate for deficiencies in the red region. An innovative strategy was formulated to resolve this spectral overlapping by alternatively arranging phosphor-in-glass (PiG) through cutting and reassembling the commercial red CaAlSiN3:Eu2+ and green Lu3Al5O12:Ce3+ PiG. PiGs were fabricated using glass frits with a low softening temperature of 600°C, which exhibited excellent thermal stability and high transparency, improving life time even at an operating temperature of 200°C. This strategy overcomes the spectral overlapping issue more efficiently than the randomly mixed and patented stacking design of multiple phosphors for a remote-type WLED. The protocol for the current design of PiG possesses excellent thermal and chemical stability with high luminous efficiency and color purity is an attempt to make smarter solid state lighting for high-powered remote-type white light-emitting devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Lin and R.-S. Liu, J. Phys. Chem. Lett. 2, 1268 (2011).
    [CrossRef]
  2. E. F. Schubert and J. K. Kim, Science 308, 1274 (2005).
    [CrossRef]
  3. R. F. Service, Science 325, 809 (2009).
    [CrossRef]
  4. P. Arunkumar, N. Prabu, M. Kottaisamy, N. Mujafar Kani, P. Kamaraj, A. Burkanudeen, and D. Jeyakumar, J. Am. Ceram. Soc. 94, 1627 (2011).
    [CrossRef]
  5. Y. Zhu and N. Narendran, Jpn. J. Appl. Phys. 49, 100203 (2010).
    [CrossRef]
  6. P. F. Smet, A. B. Parmentier, and D. Poelman, J. Electrochem. Soc. 158, R37 (2011).
    [CrossRef]
  7. K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R. Xie, and T. Suehiro, Opt. Lett. 29, 2001 (2004).
    [CrossRef]
  8. J. G. Boerekamp, C. G. A. Hoelen, and M. P. J. Peeters, “Display device and illumination device,” W.O. patent application2009083887 A1 (July9, 2009).
  9. L. Yang, M. Chen, Z. Lv, S. Wang, X. Liu, and S. Liu, Opt. Lett. 38, 2240 (2013).
    [CrossRef]
  10. J. S. Lee, S. Unithrattil, S. Kim, I. J. Lee, H. Lee, and W. B. Im, Opt. Lett. 38, 3298 (2013).
    [CrossRef]
  11. Y. K. Lee, J. S. Lee, J. Heo, W. B. Im, and W. J. Chung, Opt. Lett. 37, 3276 (2012).
    [CrossRef]
  12. L. Chen, C.-C. Lin, C.-W. Yeh, and R.-S. Liu, Materials 3, 2172 (2010).
    [CrossRef]
  13. X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, Chem. Mater. 19, 4592 (2007).
    [CrossRef]

2013 (2)

2012 (1)

2011 (3)

C. C. Lin and R.-S. Liu, J. Phys. Chem. Lett. 2, 1268 (2011).
[CrossRef]

P. Arunkumar, N. Prabu, M. Kottaisamy, N. Mujafar Kani, P. Kamaraj, A. Burkanudeen, and D. Jeyakumar, J. Am. Ceram. Soc. 94, 1627 (2011).
[CrossRef]

P. F. Smet, A. B. Parmentier, and D. Poelman, J. Electrochem. Soc. 158, R37 (2011).
[CrossRef]

2010 (2)

Y. Zhu and N. Narendran, Jpn. J. Appl. Phys. 49, 100203 (2010).
[CrossRef]

L. Chen, C.-C. Lin, C.-W. Yeh, and R.-S. Liu, Materials 3, 2172 (2010).
[CrossRef]

2009 (1)

R. F. Service, Science 325, 809 (2009).
[CrossRef]

2007 (1)

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, Chem. Mater. 19, 4592 (2007).
[CrossRef]

2005 (1)

E. F. Schubert and J. K. Kim, Science 308, 1274 (2005).
[CrossRef]

2004 (1)

Arunkumar, P.

P. Arunkumar, N. Prabu, M. Kottaisamy, N. Mujafar Kani, P. Kamaraj, A. Burkanudeen, and D. Jeyakumar, J. Am. Ceram. Soc. 94, 1627 (2011).
[CrossRef]

Boerekamp, J. G.

J. G. Boerekamp, C. G. A. Hoelen, and M. P. J. Peeters, “Display device and illumination device,” W.O. patent application2009083887 A1 (July9, 2009).

Burkanudeen, A.

P. Arunkumar, N. Prabu, M. Kottaisamy, N. Mujafar Kani, P. Kamaraj, A. Burkanudeen, and D. Jeyakumar, J. Am. Ceram. Soc. 94, 1627 (2011).
[CrossRef]

Chen, L.

L. Chen, C.-C. Lin, C.-W. Yeh, and R.-S. Liu, Materials 3, 2172 (2010).
[CrossRef]

Chen, M.

Chung, W. J.

Hanzawa, H.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, Chem. Mater. 19, 4592 (2007).
[CrossRef]

Heo, J.

Hirosaki, N.

Hoelen, C. G. A.

J. G. Boerekamp, C. G. A. Hoelen, and M. P. J. Peeters, “Display device and illumination device,” W.O. patent application2009083887 A1 (July9, 2009).

Horikawa, T.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, Chem. Mater. 19, 4592 (2007).
[CrossRef]

Im, W. B.

Jeyakumar, D.

P. Arunkumar, N. Prabu, M. Kottaisamy, N. Mujafar Kani, P. Kamaraj, A. Burkanudeen, and D. Jeyakumar, J. Am. Ceram. Soc. 94, 1627 (2011).
[CrossRef]

Kamaraj, P.

P. Arunkumar, N. Prabu, M. Kottaisamy, N. Mujafar Kani, P. Kamaraj, A. Burkanudeen, and D. Jeyakumar, J. Am. Ceram. Soc. 94, 1627 (2011).
[CrossRef]

Kijima, N.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, Chem. Mater. 19, 4592 (2007).
[CrossRef]

Kim, J. K.

E. F. Schubert and J. K. Kim, Science 308, 1274 (2005).
[CrossRef]

Kim, S.

Kimura, N.

Kottaisamy, M.

P. Arunkumar, N. Prabu, M. Kottaisamy, N. Mujafar Kani, P. Kamaraj, A. Burkanudeen, and D. Jeyakumar, J. Am. Ceram. Soc. 94, 1627 (2011).
[CrossRef]

Lee, H.

Lee, I. J.

Lee, J. S.

Lee, Y. K.

Lin, C. C.

C. C. Lin and R.-S. Liu, J. Phys. Chem. Lett. 2, 1268 (2011).
[CrossRef]

Lin, C.-C.

L. Chen, C.-C. Lin, C.-W. Yeh, and R.-S. Liu, Materials 3, 2172 (2010).
[CrossRef]

Liu, R.-S.

C. C. Lin and R.-S. Liu, J. Phys. Chem. Lett. 2, 1268 (2011).
[CrossRef]

L. Chen, C.-C. Lin, C.-W. Yeh, and R.-S. Liu, Materials 3, 2172 (2010).
[CrossRef]

Liu, S.

Liu, X.

Lv, Z.

Machida, K.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, Chem. Mater. 19, 4592 (2007).
[CrossRef]

Mujafar Kani, N.

P. Arunkumar, N. Prabu, M. Kottaisamy, N. Mujafar Kani, P. Kamaraj, A. Burkanudeen, and D. Jeyakumar, J. Am. Ceram. Soc. 94, 1627 (2011).
[CrossRef]

Narendran, N.

Y. Zhu and N. Narendran, Jpn. J. Appl. Phys. 49, 100203 (2010).
[CrossRef]

Ohashi, M.

Omichi, K.

Parmentier, A. B.

P. F. Smet, A. B. Parmentier, and D. Poelman, J. Electrochem. Soc. 158, R37 (2011).
[CrossRef]

Peeters, M. P. J.

J. G. Boerekamp, C. G. A. Hoelen, and M. P. J. Peeters, “Display device and illumination device,” W.O. patent application2009083887 A1 (July9, 2009).

Piao, X.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, Chem. Mater. 19, 4592 (2007).
[CrossRef]

Poelman, D.

P. F. Smet, A. B. Parmentier, and D. Poelman, J. Electrochem. Soc. 158, R37 (2011).
[CrossRef]

Prabu, N.

P. Arunkumar, N. Prabu, M. Kottaisamy, N. Mujafar Kani, P. Kamaraj, A. Burkanudeen, and D. Jeyakumar, J. Am. Ceram. Soc. 94, 1627 (2011).
[CrossRef]

Sakuma, K.

Schubert, E. F.

E. F. Schubert and J. K. Kim, Science 308, 1274 (2005).
[CrossRef]

Service, R. F.

R. F. Service, Science 325, 809 (2009).
[CrossRef]

Shimomura, Y.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, Chem. Mater. 19, 4592 (2007).
[CrossRef]

Smet, P. F.

P. F. Smet, A. B. Parmentier, and D. Poelman, J. Electrochem. Soc. 158, R37 (2011).
[CrossRef]

Suehiro, T.

Tanaka, D.

Unithrattil, S.

Wang, S.

Xie, R.

Yamamoto, Y.

Yang, L.

Yeh, C.-W.

L. Chen, C.-C. Lin, C.-W. Yeh, and R.-S. Liu, Materials 3, 2172 (2010).
[CrossRef]

Zhu, Y.

Y. Zhu and N. Narendran, Jpn. J. Appl. Phys. 49, 100203 (2010).
[CrossRef]

Chem. Mater. (1)

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, Chem. Mater. 19, 4592 (2007).
[CrossRef]

J. Am. Ceram. Soc. (1)

P. Arunkumar, N. Prabu, M. Kottaisamy, N. Mujafar Kani, P. Kamaraj, A. Burkanudeen, and D. Jeyakumar, J. Am. Ceram. Soc. 94, 1627 (2011).
[CrossRef]

J. Electrochem. Soc. (1)

P. F. Smet, A. B. Parmentier, and D. Poelman, J. Electrochem. Soc. 158, R37 (2011).
[CrossRef]

J. Phys. Chem. Lett. (1)

C. C. Lin and R.-S. Liu, J. Phys. Chem. Lett. 2, 1268 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Zhu and N. Narendran, Jpn. J. Appl. Phys. 49, 100203 (2010).
[CrossRef]

Materials (1)

L. Chen, C.-C. Lin, C.-W. Yeh, and R.-S. Liu, Materials 3, 2172 (2010).
[CrossRef]

Opt. Lett. (4)

Science (2)

E. F. Schubert and J. K. Kim, Science 308, 1274 (2005).
[CrossRef]

R. F. Service, Science 325, 809 (2009).
[CrossRef]

Other (1)

J. G. Boerekamp, C. G. A. Hoelen, and M. P. J. Peeters, “Display device and illumination device,” W.O. patent application2009083887 A1 (July9, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Spectral overlapping of green LuAG:Ce3+ and red CASN:Eu2+ phosphor (a) powders and (b) randomly mixed reference PiG, with the double-headed arrow describe overlapping region and inset containing scheme of reference PiG.

Fig. 2.
Fig. 2.

Scheme for the fabrication of a 2-piece (2-PiG) and a 4-piece PiG (4-PiG) of green LuAG:Ce3+ and red CASN:Eu2+ PiG with 1 mm thickness.

Fig. 3.
Fig. 3.

Fabricated PiG designs of (a) reference PiG with randomly mixed red and green phosphor, and 4-PiG with glass substrate of size, (b) 1cm×1cm, and (c) 2cm×2cm, with dashed squares representing the edge of glass substrates.

Fig. 4.
Fig. 4.

EL spectra of reference PiG and 4-PiG with glass substrate of 2cm×2cm size and 0.1 mm thickness mounted on a remote-type configuration. The inset shows the scheme of a self-designed remote-type configuration.

Fig. 5.
Fig. 5.

EL spectra of 2- and 4-PiG using the commercial KOPTI chip. Inset shows the prototype of the fabricated LED chip.

Tables (2)

Tables Icon

Table 1. Electroluminescence Data of 4-PiG with Glass Substrate Support

Tables Icon

Table 2. Electroluminescence Data of PiGs with Commercial KOPTI Chip

Metrics