Abstract

The speckle pattern arising from a thin random, disordered scatterer may be used to detect the transversal mode of an incident beam. On the other hand, speckle patterns originating from meter-long multimode fibers can be used to detect different wavelengths. Combining these approaches, we develop a method that uses a thin random scattering medium to measure the wavelength of a near-infrared laser beam with picometer resolution. The method is based on the application of principal component analysis, which is used for pattern recognition and is applied here to the case of speckle pattern categorization.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Vellekoop and A. Mosk, Opt. Lett. 32, 2309 (2007).
    [CrossRef]
  2. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, Nat. Photonics 4, 320 (2010).
    [CrossRef]
  3. T. Čižmár, M. Mazilu, and K. Dholakia, Nat. Photonics 4, 388 (2010).
    [CrossRef]
  4. S. Kosmeier, A. C. De Luca, S. Zolotovskaya, A. Di Falco, and M. Mazilu, Sci. Rep. 3, 1808 (2013).
  5. M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 100, 231115 (2012).
    [CrossRef]
  6. A. Mourka, M. Mazilu, E. M. Wright, and K. Dholakia, Sci. Rep. 3, 1422 (2013).
    [CrossRef]
  7. B. Redding, S. M. Popoff, and H. Cao, Opt. Express 21, 6584 (2013).
    [CrossRef]
  8. B. Redding and H. Cao, Opt. Lett. 37, 3384 (2012).
    [CrossRef]
  9. T. W. Kohlgraf-Owens and A. Dogariu, Opt. Lett. 35, 2236 (2010).
    [CrossRef]
  10. L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, Opt. Quantum Electron. 38, 915 (2002).
    [CrossRef]
  11. A. Di Falco, C. Conti, and G. Assanto, J. Lightwave Technol. 22, 1748 (2004).
    [CrossRef]
  12. T. Baba and T. Matsumoto, Appl. Phys. Lett. 81, 2325 (2002).
    [CrossRef]
  13. B. Redding, S. F. Liew, R. Sarma, and H. Cao, Nat. Photonics 7, 746 (2013).
    [CrossRef]
  14. P. Francis and B. Wills, Quas. Cosmol. 162, 363 (1999).
  15. X. Tsampoula, M. Mazilu, T. Vettenburg, F. Gunn-Moore, and K. Dholakia, Photon. Res. 1, 42 (2013).

2013

S. Kosmeier, A. C. De Luca, S. Zolotovskaya, A. Di Falco, and M. Mazilu, Sci. Rep. 3, 1808 (2013).

A. Mourka, M. Mazilu, E. M. Wright, and K. Dholakia, Sci. Rep. 3, 1422 (2013).
[CrossRef]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, Nat. Photonics 7, 746 (2013).
[CrossRef]

B. Redding, S. M. Popoff, and H. Cao, Opt. Express 21, 6584 (2013).
[CrossRef]

X. Tsampoula, M. Mazilu, T. Vettenburg, F. Gunn-Moore, and K. Dholakia, Photon. Res. 1, 42 (2013).

2012

B. Redding and H. Cao, Opt. Lett. 37, 3384 (2012).
[CrossRef]

M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 100, 231115 (2012).
[CrossRef]

2010

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, Nat. Photonics 4, 320 (2010).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, Nat. Photonics 4, 388 (2010).
[CrossRef]

T. W. Kohlgraf-Owens and A. Dogariu, Opt. Lett. 35, 2236 (2010).
[CrossRef]

2007

2004

2002

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, Opt. Quantum Electron. 38, 915 (2002).
[CrossRef]

T. Baba and T. Matsumoto, Appl. Phys. Lett. 81, 2325 (2002).
[CrossRef]

1999

P. Francis and B. Wills, Quas. Cosmol. 162, 363 (1999).

Assanto, G.

Baba, T.

T. Baba and T. Matsumoto, Appl. Phys. Lett. 81, 2325 (2002).
[CrossRef]

Cao, H.

Cižmár, T.

T. Čižmár, M. Mazilu, and K. Dholakia, Nat. Photonics 4, 388 (2010).
[CrossRef]

Conti, C.

De Luca, A. C.

S. Kosmeier, A. C. De Luca, S. Zolotovskaya, A. Di Falco, and M. Mazilu, Sci. Rep. 3, 1808 (2013).

Dholakia, K.

A. Mourka, M. Mazilu, E. M. Wright, and K. Dholakia, Sci. Rep. 3, 1422 (2013).
[CrossRef]

X. Tsampoula, M. Mazilu, T. Vettenburg, F. Gunn-Moore, and K. Dholakia, Photon. Res. 1, 42 (2013).

M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 100, 231115 (2012).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, Nat. Photonics 4, 388 (2010).
[CrossRef]

Di Falco, A.

S. Kosmeier, A. C. De Luca, S. Zolotovskaya, A. Di Falco, and M. Mazilu, Sci. Rep. 3, 1808 (2013).

A. Di Falco, C. Conti, and G. Assanto, J. Lightwave Technol. 22, 1748 (2004).
[CrossRef]

Dogariu, A.

Francis, P.

P. Francis and B. Wills, Quas. Cosmol. 162, 363 (1999).

Gunn-Moore, F.

Karle, T.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, Opt. Quantum Electron. 38, 915 (2002).
[CrossRef]

Kohlgraf-Owens, T. W.

Kosmeier, S.

S. Kosmeier, A. C. De Luca, S. Zolotovskaya, A. Di Falco, and M. Mazilu, Sci. Rep. 3, 1808 (2013).

Krauss, T. F.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, Opt. Quantum Electron. 38, 915 (2002).
[CrossRef]

Lagendijk, A.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, Nat. Photonics 4, 320 (2010).
[CrossRef]

Liew, S. F.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, Nat. Photonics 7, 746 (2013).
[CrossRef]

Matsumoto, T.

T. Baba and T. Matsumoto, Appl. Phys. Lett. 81, 2325 (2002).
[CrossRef]

Mazilu, M.

A. Mourka, M. Mazilu, E. M. Wright, and K. Dholakia, Sci. Rep. 3, 1422 (2013).
[CrossRef]

S. Kosmeier, A. C. De Luca, S. Zolotovskaya, A. Di Falco, and M. Mazilu, Sci. Rep. 3, 1808 (2013).

X. Tsampoula, M. Mazilu, T. Vettenburg, F. Gunn-Moore, and K. Dholakia, Photon. Res. 1, 42 (2013).

M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 100, 231115 (2012).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, Nat. Photonics 4, 388 (2010).
[CrossRef]

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, Opt. Quantum Electron. 38, 915 (2002).
[CrossRef]

Mosk, A.

Mosk, A. P.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, Nat. Photonics 4, 320 (2010).
[CrossRef]

Mourka, A.

A. Mourka, M. Mazilu, E. M. Wright, and K. Dholakia, Sci. Rep. 3, 1422 (2013).
[CrossRef]

M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 100, 231115 (2012).
[CrossRef]

Popoff, S. M.

Redding, B.

Sarma, R.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, Nat. Photonics 7, 746 (2013).
[CrossRef]

Tsampoula, X.

Vellekoop, I.

Vellekoop, I. M.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, Nat. Photonics 4, 320 (2010).
[CrossRef]

Vettenburg, T.

X. Tsampoula, M. Mazilu, T. Vettenburg, F. Gunn-Moore, and K. Dholakia, Photon. Res. 1, 42 (2013).

M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 100, 231115 (2012).
[CrossRef]

Wills, B.

P. Francis and B. Wills, Quas. Cosmol. 162, 363 (1999).

Wright, E. M.

A. Mourka, M. Mazilu, E. M. Wright, and K. Dholakia, Sci. Rep. 3, 1422 (2013).
[CrossRef]

M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 100, 231115 (2012).
[CrossRef]

Wu, L.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, Opt. Quantum Electron. 38, 915 (2002).
[CrossRef]

Zolotovskaya, S.

S. Kosmeier, A. C. De Luca, S. Zolotovskaya, A. Di Falco, and M. Mazilu, Sci. Rep. 3, 1808 (2013).

Appl. Phys. Lett.

M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 100, 231115 (2012).
[CrossRef]

T. Baba and T. Matsumoto, Appl. Phys. Lett. 81, 2325 (2002).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, Nat. Photonics 4, 320 (2010).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, Nat. Photonics 4, 388 (2010).
[CrossRef]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, Nat. Photonics 7, 746 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, Opt. Quantum Electron. 38, 915 (2002).
[CrossRef]

Photon. Res.

Quas. Cosmol.

P. Francis and B. Wills, Quas. Cosmol. 162, 363 (1999).

Sci. Rep.

S. Kosmeier, A. C. De Luca, S. Zolotovskaya, A. Di Falco, and M. Mazilu, Sci. Rep. 3, 1808 (2013).

A. Mourka, M. Mazilu, E. M. Wright, and K. Dholakia, Sci. Rep. 3, 1422 (2013).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (45291 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup. (a) Photograph of a typical sample. (b) SEM image of the used alumina particles, with average size 5 μm. (c) Schematic of the experimental apparatus of the proposed spectrometer: SMF=single-mode fiber (Thorlabs P3-780A-FC-1) and CCD=charge-coupled camera.

Fig. 2.
Fig. 2.

Experimental measured wavelength using the alumina random super-prism in direct illumination (Media 1). (a) PCA decomposition of the detected speckle pattern as a function of the laser wavelength varying between 785.1 and 785.6 nm. (b) An example of the far-field speckle pattern observed at 785.234 nm. (c)–(e) First three principal components used in the decomposition.

Fig. 3.
Fig. 3.

Measured wavelength-error distribution in the case of the alumina drop in direct illumination. The bar chart shows the error distribution (bar chart) for the partial least-squares regression and (red curve) for the nearest-neighbor classification. The regression has a standard error deviation of 13 pm, and the nearest neighbor classification was achieved without error.

Fig. 4.
Fig. 4.

Modeled speckle pattern variability considering a random diffuser placed inside a Fabry–Perot cavity composed of two distributed Brag reflectors having an increasing number of periods, i.e., increasing reflectivity. The different colors correspond to 10 different incident wavelengths chosen in a narrow wavelength range (0.1 nm).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M=aaT,

Metrics