Abstract

Photoacoustic microscopy (PAM), whose image quality largely depends on the optical absorption of samples, provides endogenous information for structural and functional imaging. However, PAM technology in general can not provide edge enhancement imaging for absorbing objects. Therefore, PAM and differential microscopy are integrated for the first time in a single technique to obtain an edge enhancement image. The resolution test target RTA-07 and red blood cells are used as samples to achieve the desired spatial differential photoacoustic imaging. The feasible biomedical application of edge enhancement from the improved differential PAM was demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. L. Tan, Z. L. Tang, Y. B. Wu, Y. F. Liao, W. Dong, and L. N. Guo, Opt. Express 19, 2426 (2011).
    [CrossRef]
  2. M. H. Xu and L. V. Wang, Rev. Sci. Instrum. 77, 041101 (2006).
    [CrossRef]
  3. M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Opt. Lett. 31, 474 (2006).
    [CrossRef]
  4. K. Maslov, G. Stoica, and L. V. Wang, Opt. Lett. 30, 625 (2005).
    [CrossRef]
  5. V. Tsytsarev, S. Hu, J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, J. Biomed. Opt. 16, 076002 (2011).
    [CrossRef]
  6. Z. L. Tan, Y. F. Liao, Y. B. Wu, Z. L. Tang, and R. K. Wang, Opt. Express 20, 5802 (2012).
    [CrossRef]
  7. A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, Opt. Lett. 36, 769 (2011).
    [CrossRef]
  8. T. Nakamura and C. Chang, Opt. Express 19, 15304 (2011).
    [CrossRef]
  9. T. Nakamura and C. Chang, Ultramicroscopy 113, 139 (2012).
    [CrossRef]
  10. C. J. Cogswell and C. J. R. Sheppard, J. Microsc. 165, 81 (1992).
    [CrossRef]
  11. M. Zhang, Z. L. Tang, Z. L. Tan, Y. B. Wu, Y. F. Liao, and L. N. Guo, Acta Optica Sinica 32, 0318001 (2012).
    [CrossRef]

2012 (3)

Z. L. Tan, Y. F. Liao, Y. B. Wu, Z. L. Tang, and R. K. Wang, Opt. Express 20, 5802 (2012).
[CrossRef]

T. Nakamura and C. Chang, Ultramicroscopy 113, 139 (2012).
[CrossRef]

M. Zhang, Z. L. Tang, Z. L. Tan, Y. B. Wu, Y. F. Liao, and L. N. Guo, Acta Optica Sinica 32, 0318001 (2012).
[CrossRef]

2011 (4)

2006 (2)

2005 (1)

1992 (1)

C. J. Cogswell and C. J. R. Sheppard, J. Microsc. 165, 81 (1992).
[CrossRef]

Barbour, D. L.

V. Tsytsarev, S. Hu, J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, J. Biomed. Opt. 16, 076002 (2011).
[CrossRef]

Chang, C.

T. Nakamura and C. Chang, Ultramicroscopy 113, 139 (2012).
[CrossRef]

T. Nakamura and C. Chang, Opt. Express 19, 15304 (2011).
[CrossRef]

Cogswell, C. J.

C. J. Cogswell and C. J. R. Sheppard, J. Microsc. 165, 81 (1992).
[CrossRef]

Danielli, A.

Dong, W.

Favazza, C. P.

Guo, L. N.

M. Zhang, Z. L. Tang, Z. L. Tan, Y. B. Wu, Y. F. Liao, and L. N. Guo, Acta Optica Sinica 32, 0318001 (2012).
[CrossRef]

Z. L. Tan, Z. L. Tang, Y. B. Wu, Y. F. Liao, W. Dong, and L. N. Guo, Opt. Express 19, 2426 (2011).
[CrossRef]

Hu, S.

V. Tsytsarev, S. Hu, J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, J. Biomed. Opt. 16, 076002 (2011).
[CrossRef]

Li, M. L.

Liao, Y. F.

Maslov, K.

Nakamura, T.

T. Nakamura and C. Chang, Ultramicroscopy 113, 139 (2012).
[CrossRef]

T. Nakamura and C. Chang, Opt. Express 19, 15304 (2011).
[CrossRef]

Sheppard, C. J. R.

C. J. Cogswell and C. J. R. Sheppard, J. Microsc. 165, 81 (1992).
[CrossRef]

Stoica, G.

Tan, Z. L.

Tang, Z. L.

Tsytsarev, V.

V. Tsytsarev, S. Hu, J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, J. Biomed. Opt. 16, 076002 (2011).
[CrossRef]

Wang, L. V.

Wang, R. K.

Wu, Y. B.

Xu, M. H.

M. H. Xu and L. V. Wang, Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Yao, J.

V. Tsytsarev, S. Hu, J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, J. Biomed. Opt. 16, 076002 (2011).
[CrossRef]

Zhang, H. F.

Zhang, M.

M. Zhang, Z. L. Tang, Z. L. Tan, Y. B. Wu, Y. F. Liao, and L. N. Guo, Acta Optica Sinica 32, 0318001 (2012).
[CrossRef]

Acta Optica Sinica (1)

M. Zhang, Z. L. Tang, Z. L. Tan, Y. B. Wu, Y. F. Liao, and L. N. Guo, Acta Optica Sinica 32, 0318001 (2012).
[CrossRef]

J. Biomed. Opt. (1)

V. Tsytsarev, S. Hu, J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, J. Biomed. Opt. 16, 076002 (2011).
[CrossRef]

J. Microsc. (1)

C. J. Cogswell and C. J. R. Sheppard, J. Microsc. 165, 81 (1992).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

M. H. Xu and L. V. Wang, Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Ultramicroscopy (1)

T. Nakamura and C. Chang, Ultramicroscopy 113, 139 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the optical complementary chopper. The dashed lines indicate that the light is blocked. BS1 and BS2 are dichroic mirrors. M1 and M2 represent the total reflecting mirrors at time (a)t and at time (b) (t+Δt).

Fig. 2.
Fig. 2.

Schematic of the PAM imaging system.

Fig. 3.
Fig. 3.

Images of the resolution test target RTA-07. (a) PA imaging of a group 5 member. (b) Normalized PA signals at the sections highlighted by the space from a to a in (a). (c) Differential PA imaging of (b). (d) Normalized differential PA signals at the sections highlighted by the space from a to a in (c).

Fig. 4.
Fig. 4.

Imaging of irregular objects. (a) PA imaging of “23” on the resolution test target RTA-07. (b) Differential PA imaging of (a). (c) PA imaging of RBCs with iron-deficiency anemia. (d) Differential PA imaging of (c).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ωΔt=π.
S=S1(t)+S2(t+Δt)=cβ(x)I01cosωt+cβ(x+Δx)I02cos(ωt+π)=cβ(x)I01cosωtcβ(x+Δx)I02cosωt.
S=cI0β(x)cI0β(x+Δx)=S(x)S(x+Δx).
dS(x)dx=limΔx0S(x+Δx)S(x)Δx=limΔx0cI0β(x+Δx)β(x)Δx=cI0dβdx.

Metrics