Experiments for cell identification are presented using a high-precision cell phase measurement system that does not require any phase unwrapping. This system is based on a Mach–Zehnder interferometer using a phase-locking technique, and it measures the change in optical path length while the sample is scanned across the optical axis. The spatial resolution is estimated to be less than 1.1 μm. The sensitivity of optical path length difference is estimated to be less than 2 nm. Using experiments, we investigate the potential of this approach for cancer cell identification. In our preliminary experiments, cancer cells were distinguished from normal cells through comparison of optical path length differences.

© 2013 Optical Society of America

Full Article  |  PDF Article


  • View by:
  • |
  • |
  • |

  1. W. J. Choi, D. I. Jeon, S. Ahn, J. Yoon, S. Kim, and B. H. Lee, Opt. Express 18, 23285 (2010).
  2. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, Appl. Opt. 44, 1806 (2005).
  3. G. Pedrini and H. J. Tiziani, Appl. Opt. 41, 4489 (2002).
  4. P. Ferraro, D. Alferi, S. D. Nicola, L. D. Petrocellis, A. Finizio, and G. Pierattini, Opt. Lett. 31, 1405 (2006).
  5. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, Appl. Opt. 40, 6177 (2001).
  6. B. Grajciar, Y. Lehareinger, A. F. Fercher, and R. A. Leitgeb, Opt. Express 18, 21841 (2010).
  7. P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, Opt. Lett. 30, 468 (2005).
  8. P. Gao, B. Yao, J. Han, L. Chen, Y. Wang, and M. Lei, Appl. Opt. 47, 2760 (2008).
  9. G. Páez and M. Strojnik, J. Opt. Soc. Am. A 16, 475 (1999).
  10. A. Khmaladze, R. L. Matz, C. Zhang, T. Wang, M. M. B. Holl, and Z. Chen, Opt. Lett. 36, 912 (2011).
  11. J. Zhang, B. Rao, L. Yu, and Z. Chen, Opt. Lett. 34, 3442 (2009).
  12. S. Yuqing, Opt. Express 15, 8059 (2007).

2011 (1)

2010 (2)

2009 (1)

2008 (1)

2007 (1)

2006 (1)

2005 (2)

2002 (1)

2001 (1)

1999 (1)

Ahn, S.

Alferi, D.

Charrière, F.

Chen, L.

Chen, Z.

Choi, W. J.

Colomb, T.

Cuche, E.

Depeursinge, C.

Depeursinge, C. D.

Emery, Y.

Fercher, A. F.

Ferraro, P.

Finizio, A.

Gao, P.

Grajciar, B.

Han, J.

Holl, M. M. B.

Jeon, D. I.

Kato, J.

Khmaladze, A.

Kim, S.

Lee, B. H.

Lehareinger, Y.

Lei, M.

Leitgeb, R. A.

Magistretti, P.

Marquet, P.

Massatsch, P.

Matz, R. L.

Mizuno, J.

Nicola, S. D.

Ohta, S.

Páez, G.

Pedrini, G.

Petrocellis, L. D.

Pierattini, G.

Rao, B.

Rappaz, B.

Strojnik, M.

Tiziani, H. J.

Wang, T.

Wang, Y.

Yamaguchi, I.

Yao, B.

Yoon, J.

Yu, L.

Yuqing, S.

Zhang, C.

Zhang, J.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

Figures (3)

Fig. 1.
Fig. 1.

Experimental setup. BE, beam expander; λ/2, half-wave plate; PBS, polarization beam splitter; M, Mirror; PZT, piezo-electric transducer; BS, beam splitter; and PD, photodetector.

Fig. 2.
Fig. 2.

Measurement of phase sensitivity and spatial resolution. (a) Experimentally obtained 1D optical path length difference of PLC. Both the measurement results and the theoretical curve are plotted. The black line is the average value, which was scanned 10 times. The gray line is the theoretical curve calculated using geometrical optics. (b) A zoomed-in version of the experiment results, showing the top area of the PLC. The plotted data represents the means±standard deviation (n=10 times). (c) The result of the phase measurement. (d) Optical path length difference distribution for thick cells. (e) 1D optical path length difference of thick cells.

Fig. 3.
Fig. 3.

(a) 3D optical path length difference distribution of a cancer cell, (b) optical path length difference distribution for normal cells, and (c) identification between normal and cancer cells. The horizontal axis shows the average of optical path length difference in the highest 2% of all data. The vertical axis shows the number of sample.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.