Abstract

We propose an inter-Ascan speckle decorrelation based method that can quantitatively assess blood flow normal to the direction of the optical coherence tomography imaging beam. To validate this method, we performed a systematic study using both phantom and in vivo animal models. Results show that our speckle analysis method can accurately extract transverse flow speed with high spatial and temporal resolution.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. P. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, Opt. Lett. 22, 1119 (1997).
    [CrossRef]
  2. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, Opt. Express 15, 4083 (2007).
    [CrossRef]
  3. Y. Huang, X. Liu, and J. U. Kang, Biomed. Opt. Express 3, 2162 (2012).
    [CrossRef]
  4. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, Opt. Lett. 33, 1530 (2008).
    [CrossRef]
  5. X. Liu, K. Zhang, Y. Huang, and J. U. Kang, Biomed. Opt. Express 2, 2995 (2011).
    [CrossRef]
  6. A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, Opt. Lett. 33, 1530 (2010).
    [CrossRef]
  7. H. Ren, C. Du, and Y. Pan, Opt. Lett. 37, 1388 (2012).
    [CrossRef]
  8. J. Barton and S. Stromski, Opt. Express 13, 5234 (2005).
    [CrossRef]
  9. Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, Laser Phys. Lett. 8, 318 (2011).
    [CrossRef]
  10. X. Liu, Y. Huang, and J. U. Kang, Opt. Express 20, 16567 (2012).
    [CrossRef]
  11. L. Luu, P. A. Roman, S. A. Mathews, and J. C. Ramella-Roman, Biomed. Opt. Express 3, 1350 (2012).
    [CrossRef]
  12. X. Liu, J. C. Ramella-Roman, Y. Huang, Y. Guo, and J. U. Kang, J. Opt. Soc. Am. A 30, 51 (2013).
    [CrossRef]

2013 (1)

2012 (4)

2011 (2)

Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, Laser Phys. Lett. 8, 318 (2011).
[CrossRef]

X. Liu, K. Zhang, Y. Huang, and J. U. Kang, Biomed. Opt. Express 2, 2995 (2011).
[CrossRef]

2010 (1)

2008 (1)

2007 (1)

2005 (1)

1997 (1)

Barton, J.

Cable, A.

Chen, Z. P.

Dai, X. S.

Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, Laser Phys. Lett. 8, 318 (2011).
[CrossRef]

Du, C.

Gruber, A.

Guo, Y.

Hanson, S. R.

He, Y. H.

Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, Laser Phys. Lett. 8, 318 (2011).
[CrossRef]

Huang, Y.

Hurst, S.

Jacques, S. L.

Jarvi, M.

Ji, Y. H.

Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, Laser Phys. Lett. 8, 318 (2011).
[CrossRef]

Jiang, J.

Kang, J. U.

Khurana, M.

Lee, K.

Leung, M. K.

Leung, M. K. K.

Li, P.

Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, Laser Phys. Lett. 8, 318 (2011).
[CrossRef]

Liu, X.

Luu, L.

Ma, H.

Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, Laser Phys. Lett. 8, 318 (2011).
[CrossRef]

Ma, Z.

Malekafzali, A.

Mariampillai, A.

Mathews, S. A.

Milner, T. E.

Moriyama, E. H.

Munce, N. R.

Nelson, J. S.

Pan, Y.

Ramella-Roman, J. C.

Ren, H.

Roman, P. A.

Shen, Z. Y.

Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, Laser Phys. Lett. 8, 318 (2011).
[CrossRef]

Srinivas, S.

Standish, B. A.

Stromski, S.

van Gemert, M. J. C.

Vitkin, I. A.

Wang, M.

Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, Laser Phys. Lett. 8, 318 (2011).
[CrossRef]

Wang, R. K.

Wang, X.

Wilson, B. C.

Yang, V. X. D.

Zhang, K.

Supplementary Material (3)

» Media 1: MOV (354 KB)     
» Media 2: MOV (560 KB)     
» Media 3: MOV (384 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) OCT image of a circular microchannel filled with milk. (b)–(g) Bscan images at different flow rates of 30, 90, 150, and 210 μL / min . (f) XCC as a function of lateral position, at different flow rates. (g) Calculated flow velocity across the flow channel fitted with parabolic.

Fig. 2.
Fig. 2.

(a) Illustration of the cross-section of microfluidics. (b) OCT image of the cross-section of microfluidics. (c) Results of flow rate measurement from Doppler phase shift (red circles) and speckle decorrelation analysis (blue circles).

Fig. 3.
Fig. 3.

(a) Representative OCT image (Media 1). (b) Time sequences of XCC obtained from ROI corresponding to the area with blood flow, ROI1, and ROI2. (c) Blood flow speed calculated from XCC. (d)–(f) OCT images obtained at fast, medium, and slow blood flow speed. (h)–(j) central part of ROIs of Fig. 3. (d)–(f) chosen for XCC calculation. (l)–(n) 2D images of blood flow corresponding to Fig. 3. (d)–(f) Media 2 and Media 3.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( z ) = [ r s ( x , y , z , t 0 ) * h ( x , y , z ) ] | x = x 0 , y = y 0 .
I 2 ( z ) = [ r s ( x , y , z , t 0 + Δ t ) * h ( x , y , z ) ] | x = x 0 + δ x , y = y 0 .
r s ( x , y , z , t 0 + Δ t ) = r s ( x , y δ y , z , t 0 ) .
I 1 ( z ) = [ r s ( x , y , z , t 0 ) * h ( x , y , z ) ] | x = x 0 + δ x , y = y 0 δ y .
ρ I x , y , I x + δ x , y δ y = [ I x , y ( z ) I x , y ( z ) ] [ I x + δ x , y δ y ( z ) I x + δ x , y δ y ( z ) ] σ I x , y ( z ) σ I x + δ x , y δ y ( z ) .
ρ = exp ( δ l 2 δ w 2 ) .
v = ± [ w 2 ln ( 1 / ρ ) v s 2 ] / Δ t .

Metrics