Abstract

Based on incoherent optical synthetic aperture, a super-resolution reconstruction method is proposed with pixel-wise phase correlation superposition and sparse a priori constraints deconvolution. A “full spatial-frequency” image is synthesized from multiview low resolution images captured from successive exposures of a single focus plane array with shift-motion over a short range. Owing to a displacement matrix of 1/30th pixel accuracy and high-order differential L1 norm sparse regularization, the experimental results show that this approach achieves a state-of-the-art result with a resolution gain factor of about 3.0 times. It is demonstrated theoretically and experimentally to be a good and practical solution to improve spatial resolution beyond the resolving power limitation of conventional imaging systems and at low cost.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Mait, R. Athale, and J. van der Gracht, Opt. Express 11, 2093 (2003).
    [CrossRef]
  2. G. O. Reynolds and D. J. Cronin, J. Opt. Soc. Am 60, 634 (1970).
  3. B. Katz and J. Rosen, Opt. Express 18, 962 (2010).
    [CrossRef]
  4. J. H. Massig, Opt. Lett. 27, 2179 (2002).
    [CrossRef]
  5. V. Micó, L. Granero, Z. Zalevsky, and J. García, J. Opt. A 11, 125408 (2009).
    [CrossRef]
  6. D. Rabb, D. Jameson, A. Stokes, and J. Stafford, Opt. Express 18, 10334 (2010).
    [CrossRef]
  7. G. W. Stroke, Opt. Commun. 1, 283 (1970).
    [CrossRef]
  8. I. J. Cox and C. J. R. Sheppard, J. Opt. Soc. Am. 3, 1152 (1986).
    [CrossRef]
  9. A. E. Tippie, A. Kumar, and J. R. Fienup, Opt. Express 19, 12027 (2011).
    [CrossRef]
  10. G. L. K. Morgan, J. G. Liu, and H. S. Yan, IEEE Trans. Geosci. Remote Sens. 35, 3456 (2010).

2011

2010

2009

V. Micó, L. Granero, Z. Zalevsky, and J. García, J. Opt. A 11, 125408 (2009).
[CrossRef]

2003

2002

1986

I. J. Cox and C. J. R. Sheppard, J. Opt. Soc. Am. 3, 1152 (1986).
[CrossRef]

1970

G. O. Reynolds and D. J. Cronin, J. Opt. Soc. Am 60, 634 (1970).

G. W. Stroke, Opt. Commun. 1, 283 (1970).
[CrossRef]

Athale, R.

Cox, I. J.

I. J. Cox and C. J. R. Sheppard, J. Opt. Soc. Am. 3, 1152 (1986).
[CrossRef]

Cronin, D. J.

G. O. Reynolds and D. J. Cronin, J. Opt. Soc. Am 60, 634 (1970).

Fienup, J. R.

García, J.

V. Micó, L. Granero, Z. Zalevsky, and J. García, J. Opt. A 11, 125408 (2009).
[CrossRef]

Granero, L.

V. Micó, L. Granero, Z. Zalevsky, and J. García, J. Opt. A 11, 125408 (2009).
[CrossRef]

Jameson, D.

Katz, B.

Kumar, A.

Liu, J. G.

G. L. K. Morgan, J. G. Liu, and H. S. Yan, IEEE Trans. Geosci. Remote Sens. 35, 3456 (2010).

Mait, J. N.

Massig, J. H.

Micó, V.

V. Micó, L. Granero, Z. Zalevsky, and J. García, J. Opt. A 11, 125408 (2009).
[CrossRef]

Morgan, G. L. K.

G. L. K. Morgan, J. G. Liu, and H. S. Yan, IEEE Trans. Geosci. Remote Sens. 35, 3456 (2010).

Rabb, D.

Reynolds, G. O.

G. O. Reynolds and D. J. Cronin, J. Opt. Soc. Am 60, 634 (1970).

Rosen, J.

Sheppard, C. J. R.

I. J. Cox and C. J. R. Sheppard, J. Opt. Soc. Am. 3, 1152 (1986).
[CrossRef]

Stafford, J.

Stokes, A.

Stroke, G. W.

G. W. Stroke, Opt. Commun. 1, 283 (1970).
[CrossRef]

Tippie, A. E.

van der Gracht, J.

Yan, H. S.

G. L. K. Morgan, J. G. Liu, and H. S. Yan, IEEE Trans. Geosci. Remote Sens. 35, 3456 (2010).

Zalevsky, Z.

V. Micó, L. Granero, Z. Zalevsky, and J. García, J. Opt. A 11, 125408 (2009).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

G. L. K. Morgan, J. G. Liu, and H. S. Yan, IEEE Trans. Geosci. Remote Sens. 35, 3456 (2010).

J. Opt. A

V. Micó, L. Granero, Z. Zalevsky, and J. García, J. Opt. A 11, 125408 (2009).
[CrossRef]

J. Opt. Soc. Am

G. O. Reynolds and D. J. Cronin, J. Opt. Soc. Am 60, 634 (1970).

J. Opt. Soc. Am.

I. J. Cox and C. J. R. Sheppard, J. Opt. Soc. Am. 3, 1152 (1986).
[CrossRef]

Opt. Commun.

G. W. Stroke, Opt. Commun. 1, 283 (1970).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Observation and SA reconstruction for conventional imaging system.

Fig. 2.
Fig. 2.

AF target images for SA-based SRR: (a) low resolution image sequence; (b) the SRR reconstruction result with the proposed method; (c) and (d) present center parts ROIs of one low resolution image in (a); (e) and (f) present center parts of ROIs of the SRR result (b) corresponding to the ROIs (c) and (d).

Fig. 3.
Fig. 3.

1D column profiles analysis of ROI (group 2, elements 2–6) in AF target.

Fig. 4.
Fig. 4.

Images normalization power spectrum.

Fig. 5.
Fig. 5.

Aerial image sequence and the SRR result.

Fig. 6.
Fig. 6.

Aerial camera initial motion vector estimation.

Fig. 7.
Fig. 7.

Experiment with real video images: (a) presents 30 frames low images; (b) presents the SRR result; (c), (d), and (e) show, respectively, ROI 1 nearest interpolation image, bicubic interpolation, and SRR result; (f), (g), and (h) present, respectively, ROI two nearest interpolation image, bicubic interpolation, and SRR result.

Fig. 8.
Fig. 8.

Camera initial motion vectors estimation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ii(x,y)=+Io(ξ,η)h(xξ,yη)d(ξ)d(η).
gi(x,y)=fPSFoptPSFccd+ni(x,y),
c^(k,l)=F1F*{gi}F{gi+1}|F*{gi}F{gi+1}|.
f^=argmin(λR(f))s.tAfg2=0.
f^=argmin(λ(|Df|+|D2f|))s.tAfg2=0.

Metrics