Abstract

We present theoretical and experimental results of axial displacement of objects relative to a fixed condenser focal plane (FP) in optical projection tomographic microscopy (OPTM). OPTM produces three-dimensional, reconstructed images of single cells from two-dimensional projections. The cell rotates in a microcapillary to acquire projections from different perspectives where the objective FP is scanned through the cell while the condenser FP remains fixed at the center of the microcapillary. This work uses a combination of experimental and theoretical methods to improve the OPTM instrument design.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Miao, A. Reeves, F. Patten, and E. Seibel, Ann. Biomed. Eng. 40, 263 (2012).
    [CrossRef]
  2. M. Meyer, M. Fauver, J. Rahn, T. Neumann, and F. Patten, Pattern Recogn. 42, 141 (2009).
    [CrossRef]
  3. M. Meyer, F. Patten, T. Neumann, J. Hayenga, D. Steinhauer, J. Rahn, and A. Nelson, J. Thorac. Oncol. 4, S378 (2009).
  4. M. Fauver, E. Seibel, J. Rahn, M. Meyer, F. Patten, T. Neumann, and A. Nelson, Opt. Express 13, 4210 (2005).
    [CrossRef]
  5. R. Coe and E. Seibel, J. Opt. Soc. Am. A 29, 2696 (2012).
    [CrossRef]
  6. R. L. Coe and E. J. Seibel, Proc. SPIE 8592, 85920G (2013).
    [CrossRef]
  7. I. Çapoglu, C. White, J. Rogers, H. Subramanian, A. Taflove, and V. Backman, Opt. Lett. 36, 1596 (2011).
    [CrossRef]
  8. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).
  9. E. Botcherby, R. Juškaitis, M. Booth, and T. Wilson, Opt. Lett. 32, 2007 (2007).
    [CrossRef]
  10. C. D. Kuglin and D. C. Hines, in Proceedings of IEEE International Conference on Systems, Man and Cybernetics (IEEE, 1975), p. 163.
  11. K. F. Chou, Q. Miao, R. L. Coe, and E. J. Seibel, J. Cytol. Histol. S2, 001 (2012).
    [CrossRef]

2013

R. L. Coe and E. J. Seibel, Proc. SPIE 8592, 85920G (2013).
[CrossRef]

2012

K. F. Chou, Q. Miao, R. L. Coe, and E. J. Seibel, J. Cytol. Histol. S2, 001 (2012).
[CrossRef]

Q. Miao, A. Reeves, F. Patten, and E. Seibel, Ann. Biomed. Eng. 40, 263 (2012).
[CrossRef]

R. Coe and E. Seibel, J. Opt. Soc. Am. A 29, 2696 (2012).
[CrossRef]

2011

2009

M. Meyer, M. Fauver, J. Rahn, T. Neumann, and F. Patten, Pattern Recogn. 42, 141 (2009).
[CrossRef]

M. Meyer, F. Patten, T. Neumann, J. Hayenga, D. Steinhauer, J. Rahn, and A. Nelson, J. Thorac. Oncol. 4, S378 (2009).

2007

2005

Backman, V.

Booth, M.

Botcherby, E.

Çapoglu, I.

Chou, K. F.

K. F. Chou, Q. Miao, R. L. Coe, and E. J. Seibel, J. Cytol. Histol. S2, 001 (2012).
[CrossRef]

Coe, R.

Coe, R. L.

R. L. Coe and E. J. Seibel, Proc. SPIE 8592, 85920G (2013).
[CrossRef]

K. F. Chou, Q. Miao, R. L. Coe, and E. J. Seibel, J. Cytol. Histol. S2, 001 (2012).
[CrossRef]

Fauver, M.

M. Meyer, M. Fauver, J. Rahn, T. Neumann, and F. Patten, Pattern Recogn. 42, 141 (2009).
[CrossRef]

M. Fauver, E. Seibel, J. Rahn, M. Meyer, F. Patten, T. Neumann, and A. Nelson, Opt. Express 13, 4210 (2005).
[CrossRef]

Hayenga, J.

M. Meyer, F. Patten, T. Neumann, J. Hayenga, D. Steinhauer, J. Rahn, and A. Nelson, J. Thorac. Oncol. 4, S378 (2009).

Hines, D. C.

C. D. Kuglin and D. C. Hines, in Proceedings of IEEE International Conference on Systems, Man and Cybernetics (IEEE, 1975), p. 163.

Juškaitis, R.

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

Kuglin, C. D.

C. D. Kuglin and D. C. Hines, in Proceedings of IEEE International Conference on Systems, Man and Cybernetics (IEEE, 1975), p. 163.

Meyer, M.

M. Meyer, F. Patten, T. Neumann, J. Hayenga, D. Steinhauer, J. Rahn, and A. Nelson, J. Thorac. Oncol. 4, S378 (2009).

M. Meyer, M. Fauver, J. Rahn, T. Neumann, and F. Patten, Pattern Recogn. 42, 141 (2009).
[CrossRef]

M. Fauver, E. Seibel, J. Rahn, M. Meyer, F. Patten, T. Neumann, and A. Nelson, Opt. Express 13, 4210 (2005).
[CrossRef]

Miao, Q.

Q. Miao, A. Reeves, F. Patten, and E. Seibel, Ann. Biomed. Eng. 40, 263 (2012).
[CrossRef]

K. F. Chou, Q. Miao, R. L. Coe, and E. J. Seibel, J. Cytol. Histol. S2, 001 (2012).
[CrossRef]

Nelson, A.

M. Meyer, F. Patten, T. Neumann, J. Hayenga, D. Steinhauer, J. Rahn, and A. Nelson, J. Thorac. Oncol. 4, S378 (2009).

M. Fauver, E. Seibel, J. Rahn, M. Meyer, F. Patten, T. Neumann, and A. Nelson, Opt. Express 13, 4210 (2005).
[CrossRef]

Neumann, T.

M. Meyer, F. Patten, T. Neumann, J. Hayenga, D. Steinhauer, J. Rahn, and A. Nelson, J. Thorac. Oncol. 4, S378 (2009).

M. Meyer, M. Fauver, J. Rahn, T. Neumann, and F. Patten, Pattern Recogn. 42, 141 (2009).
[CrossRef]

M. Fauver, E. Seibel, J. Rahn, M. Meyer, F. Patten, T. Neumann, and A. Nelson, Opt. Express 13, 4210 (2005).
[CrossRef]

Patten, F.

Q. Miao, A. Reeves, F. Patten, and E. Seibel, Ann. Biomed. Eng. 40, 263 (2012).
[CrossRef]

M. Meyer, M. Fauver, J. Rahn, T. Neumann, and F. Patten, Pattern Recogn. 42, 141 (2009).
[CrossRef]

M. Meyer, F. Patten, T. Neumann, J. Hayenga, D. Steinhauer, J. Rahn, and A. Nelson, J. Thorac. Oncol. 4, S378 (2009).

M. Fauver, E. Seibel, J. Rahn, M. Meyer, F. Patten, T. Neumann, and A. Nelson, Opt. Express 13, 4210 (2005).
[CrossRef]

Rahn, J.

M. Meyer, M. Fauver, J. Rahn, T. Neumann, and F. Patten, Pattern Recogn. 42, 141 (2009).
[CrossRef]

M. Meyer, F. Patten, T. Neumann, J. Hayenga, D. Steinhauer, J. Rahn, and A. Nelson, J. Thorac. Oncol. 4, S378 (2009).

M. Fauver, E. Seibel, J. Rahn, M. Meyer, F. Patten, T. Neumann, and A. Nelson, Opt. Express 13, 4210 (2005).
[CrossRef]

Reeves, A.

Q. Miao, A. Reeves, F. Patten, and E. Seibel, Ann. Biomed. Eng. 40, 263 (2012).
[CrossRef]

Rogers, J.

Seibel, E.

Seibel, E. J.

R. L. Coe and E. J. Seibel, Proc. SPIE 8592, 85920G (2013).
[CrossRef]

K. F. Chou, Q. Miao, R. L. Coe, and E. J. Seibel, J. Cytol. Histol. S2, 001 (2012).
[CrossRef]

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

Steinhauer, D.

M. Meyer, F. Patten, T. Neumann, J. Hayenga, D. Steinhauer, J. Rahn, and A. Nelson, J. Thorac. Oncol. 4, S378 (2009).

Subramanian, H.

Taflove, A.

White, C.

Wilson, T.

Ann. Biomed. Eng.

Q. Miao, A. Reeves, F. Patten, and E. Seibel, Ann. Biomed. Eng. 40, 263 (2012).
[CrossRef]

J. Cytol. Histol.

K. F. Chou, Q. Miao, R. L. Coe, and E. J. Seibel, J. Cytol. Histol. S2, 001 (2012).
[CrossRef]

J. Opt. Soc. Am. A

J. Thorac. Oncol.

M. Meyer, F. Patten, T. Neumann, J. Hayenga, D. Steinhauer, J. Rahn, and A. Nelson, J. Thorac. Oncol. 4, S378 (2009).

Opt. Express

Opt. Lett.

Pattern Recogn.

M. Meyer, M. Fauver, J. Rahn, T. Neumann, and F. Patten, Pattern Recogn. 42, 141 (2009).
[CrossRef]

Proc. SPIE

R. L. Coe and E. J. Seibel, Proc. SPIE 8592, 85920G (2013).
[CrossRef]

Other

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

C. D. Kuglin and D. C. Hines, in Proceedings of IEEE International Conference on Systems, Man and Cybernetics (IEEE, 1975), p. 163.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Diagram OPTM where projections are produced by scanning the objective to optically integrate through the cell. Projections are acquired from desired angles by rotating the microcapillary between the condenser and objective.

Fig. 2.
Fig. 2.

Illustration of a microsphere inside the microcapillary at two rotations. As the microcapillary rotates clockwise, the microsphere centroid is plotted on the right, where the objective scan range is axially displaced with the microsphere, while the condenser FP remains at the center of the microcapillary.

Fig. 3.
Fig. 3.

Image formation in a high-NA bright-field transmission microscope. The model consists of three main parts: illumination, analytical method, and image formation.

Fig. 4.
Fig. 4.

X (left column), Y (middle column), and Z (right column) cross sections of the reconstructions produced using the 0 μm (first row), 5 μm (second row), 10 μm (third row), 15 μm (fourth row), and 20 μm (fifth row) radii simulation trajectories. The scale bars are 1 μm.

Fig. 5.
Fig. 5.

Normalized intensity versus axial displacement in projections computed using simulation.

Fig. 6.
Fig. 6.

Z cross sections of the experimental reconstructions acquired at 0 μm (left) and 23.435 μm (right) radii trajectories. The objective FP is scanned 5 μm PTV around the microsphere center of mass. The scale bars are 1 μm.

Fig. 7.
Fig. 7.

Normalized intensity versus axial displacement in the projections acquired with the 23.435 μm trajectory radius before (left) and after (right) subtracting background and median filtering.

Metrics