Abstract

Recently developed spatial light modulator (SLM)-based differential interference contrast (DIC) microscopy [Opt. Lett. 34, 2988 (2009)] reveals flexibility on the implementation of DIC imaging. However, its numerical aperture (spatial resolution) is limited to maintain sufficient interference contrast, because it requires two beams to interfere. We present a structured illumination (SI) SLM-based DIC microscopy to effectively improve the lateral resolution of the SLM-based DIC microscopy. The SI field is generated and controlled by an adjustable grating displayed on an SLM. The SI SLM-based DIC expands the bandwidth of the coherent transfer function of the SLM-based DIC imaging system, thus improving the spatial resolution. The reconstructed SI SLM-based DIC image exhibits lateral resolution of approximately 208 nm, doubling that of the common SLM-based DIC image (approximately 415 nm). SI SLM-based DIC microscopy has the potential for achieving high-resolution quantitative phase images.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Nomarski, J. Phys. Radium 16, 9S (1955).
  2. D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, Opt. Lett. 35, 2370 (2010).
    [CrossRef]
  3. M. R. Arnison, K. G. Larkin, C. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
    [CrossRef]
  4. R. Danz, A. Vogelgsang, and R. K. A. Thner, Photonik 1, 42 (2004).
  5. X. Q. Cui, M. Lew, and C. H. Yang, Appl. Phys. Lett. 93, 911139 (2008).
  6. T. J. McIntyre, C. Maurer, S. Bernet, and M. Ritsch-Marte, Opt. Lett. 34, 2988 (2009).
    [CrossRef]
  7. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express 13, 689 (2005).
    [CrossRef]
  8. A. Jesacher, U. F. S. Rhapter, S. Bernet, and M. Ritsch-Marte, Phys. Rev. Lett. 94, 233902 (2005).
    [CrossRef]
  9. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express 16, 19821 (2008).
    [CrossRef]
  10. J. A. Davis and D. M. Cottrell, Opt. Lett. 19, 496 (1994).
    [CrossRef]
  11. M. Warber, M. Hasler, T. Haist, and W. Osten, Proc. SPIE 8086, 80861E (2011).
    [CrossRef]
  12. M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
    [CrossRef]
  13. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, Proc. SPIE 3919, 141 (2000).
    [CrossRef]
  14. J. L. Chen, Y. Xu, X. H. Lv, X. M. Lai, and S. Q. Zeng, Opt. Express 21, 112 (2013).
    [CrossRef]
  15. C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, Proc. SPIE 2984, 72 (1997).
    [CrossRef]
  16. T. J. McIntyre, C. Maurer, S. Fassl, S. Khan, S. Bernet, and M. Ritsch-Marte, Opt. Express 18, 14063 (2010).
    [CrossRef]
  17. T. A. Smith, L. M. Hirvonen, C. N. Lincoln, and X. Hao, J. Innov. Opt. Health Sci. 05, 1250025 (2012).
    [CrossRef]
  18. Y. A. Ushenko, J. Innov. Opt. Health Sci. 05, 1150001 (2012).
    [CrossRef]

2013 (1)

2012 (2)

T. A. Smith, L. M. Hirvonen, C. N. Lincoln, and X. Hao, J. Innov. Opt. Health Sci. 05, 1250025 (2012).
[CrossRef]

Y. A. Ushenko, J. Innov. Opt. Health Sci. 05, 1150001 (2012).
[CrossRef]

2011 (1)

M. Warber, M. Hasler, T. Haist, and W. Osten, Proc. SPIE 8086, 80861E (2011).
[CrossRef]

2010 (2)

2009 (1)

2008 (2)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express 16, 19821 (2008).
[CrossRef]

X. Q. Cui, M. Lew, and C. H. Yang, Appl. Phys. Lett. 93, 911139 (2008).

2005 (2)

A. Jesacher, U. F. S. Rhapter, S. Bernet, and M. Ritsch-Marte, Phys. Rev. Lett. 94, 233902 (2005).
[CrossRef]

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express 13, 689 (2005).
[CrossRef]

2004 (2)

M. R. Arnison, K. G. Larkin, C. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

R. Danz, A. Vogelgsang, and R. K. A. Thner, Photonik 1, 42 (2004).

2000 (2)

M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef]

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, Proc. SPIE 3919, 141 (2000).
[CrossRef]

1997 (1)

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, Proc. SPIE 2984, 72 (1997).
[CrossRef]

1994 (1)

1955 (1)

G. Nomarski, J. Phys. Radium 16, 9S (1955).

Agard, D. A.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, Proc. SPIE 3919, 141 (2000).
[CrossRef]

Arnison, M. R.

M. R. Arnison, K. G. Larkin, C. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

Bernet, S.

Chen, J. L.

Choi, W.

Cogswell, C. J.

M. R. Arnison, K. G. Larkin, C. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, Proc. SPIE 2984, 72 (1997).
[CrossRef]

Cottrell, D. M.

Cui, X. Q.

X. Q. Cui, M. Lew, and C. H. Yang, Appl. Phys. Lett. 93, 911139 (2008).

Danz, R.

R. Danz, A. Vogelgsang, and R. K. A. Thner, Photonik 1, 42 (2004).

Dasari, R. R.

Davis, J. A.

Dorn, A.

Fassl, S.

Feld, M. S.

Fu, D.

Fürhapter, S.

Gustafsson, M. G. L.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, Proc. SPIE 3919, 141 (2000).
[CrossRef]

M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef]

Haist, T.

M. Warber, M. Hasler, T. Haist, and W. Osten, Proc. SPIE 8086, 80861E (2011).
[CrossRef]

Hao, X.

T. A. Smith, L. M. Hirvonen, C. N. Lincoln, and X. Hao, J. Innov. Opt. Health Sci. 05, 1250025 (2012).
[CrossRef]

Hariharan, P.

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, Proc. SPIE 2984, 72 (1997).
[CrossRef]

Hasler, M.

M. Warber, M. Hasler, T. Haist, and W. Osten, Proc. SPIE 8086, 80861E (2011).
[CrossRef]

Hirvonen, L. M.

T. A. Smith, L. M. Hirvonen, C. N. Lincoln, and X. Hao, J. Innov. Opt. Health Sci. 05, 1250025 (2012).
[CrossRef]

Jesacher, A.

Khan, S.

Lai, X. M.

Larkin, K. G.

M. R. Arnison, K. G. Larkin, C. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, Proc. SPIE 2984, 72 (1997).
[CrossRef]

Lew, M.

X. Q. Cui, M. Lew, and C. H. Yang, Appl. Phys. Lett. 93, 911139 (2008).

Lincoln, C. N.

T. A. Smith, L. M. Hirvonen, C. N. Lincoln, and X. Hao, J. Innov. Opt. Health Sci. 05, 1250025 (2012).
[CrossRef]

Lv, X. H.

Maurer, C.

McIntyre, T. J.

Nomarski, G.

G. Nomarski, J. Phys. Radium 16, 9S (1955).

Oh, S.

Osten, W.

M. Warber, M. Hasler, T. Haist, and W. Osten, Proc. SPIE 8086, 80861E (2011).
[CrossRef]

Rhapter, U. F. S.

A. Jesacher, U. F. S. Rhapter, S. Bernet, and M. Ritsch-Marte, Phys. Rev. Lett. 94, 233902 (2005).
[CrossRef]

Ritsch-Marte, M.

Sedat, J. W.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, Proc. SPIE 3919, 141 (2000).
[CrossRef]

Sheppard, C.

M. R. Arnison, K. G. Larkin, C. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

Smith, N. I.

M. R. Arnison, K. G. Larkin, C. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, Proc. SPIE 2984, 72 (1997).
[CrossRef]

Smith, T. A.

T. A. Smith, L. M. Hirvonen, C. N. Lincoln, and X. Hao, J. Innov. Opt. Health Sci. 05, 1250025 (2012).
[CrossRef]

Thner, R. K. A.

R. Danz, A. Vogelgsang, and R. K. A. Thner, Photonik 1, 42 (2004).

Ushenko, Y. A.

Y. A. Ushenko, J. Innov. Opt. Health Sci. 05, 1150001 (2012).
[CrossRef]

Vogelgsang, A.

R. Danz, A. Vogelgsang, and R. K. A. Thner, Photonik 1, 42 (2004).

Warber, M.

M. Warber, M. Hasler, T. Haist, and W. Osten, Proc. SPIE 8086, 80861E (2011).
[CrossRef]

Xu, Y.

Yamauchi, T.

Yang, C. H.

X. Q. Cui, M. Lew, and C. H. Yang, Appl. Phys. Lett. 93, 911139 (2008).

Yaqoob, Z.

Zeng, S. Q.

Appl. Phys. Lett. (1)

X. Q. Cui, M. Lew, and C. H. Yang, Appl. Phys. Lett. 93, 911139 (2008).

J. Innov. Opt. Health Sci. (2)

T. A. Smith, L. M. Hirvonen, C. N. Lincoln, and X. Hao, J. Innov. Opt. Health Sci. 05, 1250025 (2012).
[CrossRef]

Y. A. Ushenko, J. Innov. Opt. Health Sci. 05, 1150001 (2012).
[CrossRef]

J. Microsc. (2)

M. R. Arnison, K. G. Larkin, C. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef]

J. Phys. Radium (1)

G. Nomarski, J. Phys. Radium 16, 9S (1955).

Opt. Express (4)

Opt. Lett. (3)

Photonik (1)

R. Danz, A. Vogelgsang, and R. K. A. Thner, Photonik 1, 42 (2004).

Phys. Rev. Lett. (1)

A. Jesacher, U. F. S. Rhapter, S. Bernet, and M. Ritsch-Marte, Phys. Rev. Lett. 94, 233902 (2005).
[CrossRef]

Proc. SPIE (3)

M. Warber, M. Hasler, T. Haist, and W. Osten, Proc. SPIE 8086, 80861E (2011).
[CrossRef]

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, Proc. SPIE 3919, 141 (2000).
[CrossRef]

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, Proc. SPIE 2984, 72 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of SI SLM-based DIC microscopy. Inset 1: SLM1 patterns designed to generate 0° and 90° orthogonal SI. Inset 2: random mask encoding dual-grating pattern displaced on SLM2.

Fig. 2.
Fig. 2.

Resolution measurement with 190 nm polystyrene beads for SI SLM-based DIC and SLM-based DIC imaging. (a) Reconstructed SI SLM-based DIC image. (b) Regular SLM-based DIC image. (c) and (d) are the corresponding spectra of (a) and (b). The intensity profiles in (e) and (f) are along the dotted lines in (a) and (b), with Gaussian fit. The two-grating direction of SLM2 programming (the direction of shear of DIC) is indicated with the double-headed arrow in (b).

Fig. 3.
Fig. 3.

Images of 190 nm polystyrene beads. (a) Second SLM encoded with dual gratings (DIC imaging) and (b) the second SLM encoded with dual gratings (DIC imaging) with the grating direction perpendicular to that of (a). (c) and (d) are the intensity profiles along the dotted lines in (a) and (b). Double-headed arrow indicates the direction of the two gratings (shear of DIC).

Metrics