Abstract

NaYF4:Yb, Er/NaYF4 core-shell nanocrystals with different thickness shells were synthesized. The correlation between shell thickness and upconversion (UC) luminescence intensity was investigated experimentally and theoretically. We found that the UC fluorescence intensity of the core-shell nanocrystals is enhanced exponentially with shell thickness (d) in the form of (10.9exp(d/d0). For our core-shell nanocrystals, the d0 was determined as about 5.5 nm, corresponding to an enhancement of about 12 times for the 540 nm emission intensity. The d0 may be treated as the optimized shell thickness, which represents a balance between the conflict requirements of strong UC fluorescence intensity and small total crystal size for bioapplications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, Opt. Mater. 27, 1111 (2005).
    [CrossRef]
  2. J. A. Feijo and N. Moreno, Protoplasma 223, 1 (2004).
    [CrossRef]
  3. F. Auzel, Chem. Rev. 104, 139 (2004).
    [CrossRef]
  4. J. W. Stouwdam and F. C. J. M. van Veggel, Langmuir 20, 11763 (2004).
    [CrossRef]
  5. V. L. Ermolaev and E. B. Sveshnikov, Russ. Chem. Rev. 63, 905 (1994).
    [CrossRef]
  6. H. Guo, Z. Q. Li, H. S. Qian, Y. Hu, and I. N. Muhammad, Nanotechnology 21, 125602 (2010).
    [CrossRef]
  7. Y. Wang, K. Liu, X. M. Liu, K. Dohnalová, T. Gregorkiewicz, X. G. Kong, M. C. G. Aalders, W. J. Buma, and H. Zhang, J. Phys. Chem. Lett. 2, 2083 (2011).
    [CrossRef]
  8. F. Zhang, R. C. Che, X. M. Li, C. Yao, J. P. Yang, D. K. Shen, P. Hu, W. Li, and D. Y. Zhao, Nano Lett. 12, 2852 (2012).
    [CrossRef]
  9. Z. Q. Li and Y. Zhang, Nanotechnology 19, 345606 (2008).
    [CrossRef]
  10. G. Y. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, ACS Nano 4, 3163 (2010).
    [CrossRef]
  11. J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, Phys. Rev. B 71, 125123 (2005).
    [CrossRef]
  12. D. Matsuura, Appl. Phys. Lett. 81, 4526 (2002).
    [CrossRef]
  13. A. M. Pires, O. A. Serra, S. Heer, and H. U. Güdel, J. Appl. Phys. 98, 063529 (2005).
    [CrossRef]
  14. R. H. Page, K. I. Schaffers, P. A. Waide, J. B. Tassano, S. A. Payne, and W. F. Krupke, J. Opt. Soc. Am. B 15, 996 (1998).
    [CrossRef]

2012 (1)

F. Zhang, R. C. Che, X. M. Li, C. Yao, J. P. Yang, D. K. Shen, P. Hu, W. Li, and D. Y. Zhao, Nano Lett. 12, 2852 (2012).
[CrossRef]

2011 (1)

Y. Wang, K. Liu, X. M. Liu, K. Dohnalová, T. Gregorkiewicz, X. G. Kong, M. C. G. Aalders, W. J. Buma, and H. Zhang, J. Phys. Chem. Lett. 2, 2083 (2011).
[CrossRef]

2010 (2)

H. Guo, Z. Q. Li, H. S. Qian, Y. Hu, and I. N. Muhammad, Nanotechnology 21, 125602 (2010).
[CrossRef]

G. Y. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, ACS Nano 4, 3163 (2010).
[CrossRef]

2008 (1)

Z. Q. Li and Y. Zhang, Nanotechnology 19, 345606 (2008).
[CrossRef]

2005 (3)

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, Opt. Mater. 27, 1111 (2005).
[CrossRef]

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, Phys. Rev. B 71, 125123 (2005).
[CrossRef]

A. M. Pires, O. A. Serra, S. Heer, and H. U. Güdel, J. Appl. Phys. 98, 063529 (2005).
[CrossRef]

2004 (3)

J. A. Feijo and N. Moreno, Protoplasma 223, 1 (2004).
[CrossRef]

F. Auzel, Chem. Rev. 104, 139 (2004).
[CrossRef]

J. W. Stouwdam and F. C. J. M. van Veggel, Langmuir 20, 11763 (2004).
[CrossRef]

2002 (1)

D. Matsuura, Appl. Phys. Lett. 81, 4526 (2002).
[CrossRef]

1998 (1)

1994 (1)

V. L. Ermolaev and E. B. Sveshnikov, Russ. Chem. Rev. 63, 905 (1994).
[CrossRef]

Aalders, M. C. G.

Y. Wang, K. Liu, X. M. Liu, K. Dohnalová, T. Gregorkiewicz, X. G. Kong, M. C. G. Aalders, W. J. Buma, and H. Zhang, J. Phys. Chem. Lett. 2, 2083 (2011).
[CrossRef]

Aebischer, A.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, Opt. Mater. 27, 1111 (2005).
[CrossRef]

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Ågren, H.

G. Y. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, ACS Nano 4, 3163 (2010).
[CrossRef]

Auzel, F.

F. Auzel, Chem. Rev. 104, 139 (2004).
[CrossRef]

Biner, D.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, Opt. Mater. 27, 1111 (2005).
[CrossRef]

Buma, W. J.

Y. Wang, K. Liu, X. M. Liu, K. Dohnalová, T. Gregorkiewicz, X. G. Kong, M. C. G. Aalders, W. J. Buma, and H. Zhang, J. Phys. Chem. Lett. 2, 2083 (2011).
[CrossRef]

Che, R. C.

F. Zhang, R. C. Che, X. M. Li, C. Yao, J. P. Yang, D. K. Shen, P. Hu, W. Li, and D. Y. Zhao, Nano Lett. 12, 2852 (2012).
[CrossRef]

Chen, G. Y.

G. Y. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, ACS Nano 4, 3163 (2010).
[CrossRef]

Dohnalová, K.

Y. Wang, K. Liu, X. M. Liu, K. Dohnalová, T. Gregorkiewicz, X. G. Kong, M. C. G. Aalders, W. J. Buma, and H. Zhang, J. Phys. Chem. Lett. 2, 2083 (2011).
[CrossRef]

Ermolaev, V. L.

V. L. Ermolaev and E. B. Sveshnikov, Russ. Chem. Rev. 63, 905 (1994).
[CrossRef]

Feijo, J. A.

J. A. Feijo and N. Moreno, Protoplasma 223, 1 (2004).
[CrossRef]

García-Revilla, S.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Gerner, P.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, Phys. Rev. B 71, 125123 (2005).
[CrossRef]

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, Opt. Mater. 27, 1111 (2005).
[CrossRef]

Gregorkiewicz, T.

Y. Wang, K. Liu, X. M. Liu, K. Dohnalová, T. Gregorkiewicz, X. G. Kong, M. C. G. Aalders, W. J. Buma, and H. Zhang, J. Phys. Chem. Lett. 2, 2083 (2011).
[CrossRef]

Grimm, J.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, Opt. Mater. 27, 1111 (2005).
[CrossRef]

Güdel, H. U.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, Opt. Mater. 27, 1111 (2005).
[CrossRef]

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, Phys. Rev. B 71, 125123 (2005).
[CrossRef]

A. M. Pires, O. A. Serra, S. Heer, and H. U. Güdel, J. Appl. Phys. 98, 063529 (2005).
[CrossRef]

Guo, H.

H. Guo, Z. Q. Li, H. S. Qian, Y. Hu, and I. N. Muhammad, Nanotechnology 21, 125602 (2010).
[CrossRef]

Heer, S.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, Opt. Mater. 27, 1111 (2005).
[CrossRef]

A. M. Pires, O. A. Serra, S. Heer, and H. U. Güdel, J. Appl. Phys. 98, 063529 (2005).
[CrossRef]

Hu, P.

F. Zhang, R. C. Che, X. M. Li, C. Yao, J. P. Yang, D. K. Shen, P. Hu, W. Li, and D. Y. Zhao, Nano Lett. 12, 2852 (2012).
[CrossRef]

Hu, Y.

H. Guo, Z. Q. Li, H. S. Qian, Y. Hu, and I. N. Muhammad, Nanotechnology 21, 125602 (2010).
[CrossRef]

Kong, X. G.

Y. Wang, K. Liu, X. M. Liu, K. Dohnalová, T. Gregorkiewicz, X. G. Kong, M. C. G. Aalders, W. J. Buma, and H. Zhang, J. Phys. Chem. Lett. 2, 2083 (2011).
[CrossRef]

Krämer, K. W.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, Opt. Mater. 27, 1111 (2005).
[CrossRef]

Krupke, W. F.

Kumar, R.

G. Y. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, ACS Nano 4, 3163 (2010).
[CrossRef]

Li, W.

F. Zhang, R. C. Che, X. M. Li, C. Yao, J. P. Yang, D. K. Shen, P. Hu, W. Li, and D. Y. Zhao, Nano Lett. 12, 2852 (2012).
[CrossRef]

Li, X. M.

F. Zhang, R. C. Che, X. M. Li, C. Yao, J. P. Yang, D. K. Shen, P. Hu, W. Li, and D. Y. Zhao, Nano Lett. 12, 2852 (2012).
[CrossRef]

Li, Z. Q.

H. Guo, Z. Q. Li, H. S. Qian, Y. Hu, and I. N. Muhammad, Nanotechnology 21, 125602 (2010).
[CrossRef]

Z. Q. Li and Y. Zhang, Nanotechnology 19, 345606 (2008).
[CrossRef]

Liu, K.

Y. Wang, K. Liu, X. M. Liu, K. Dohnalová, T. Gregorkiewicz, X. G. Kong, M. C. G. Aalders, W. J. Buma, and H. Zhang, J. Phys. Chem. Lett. 2, 2083 (2011).
[CrossRef]

Liu, X. M.

Y. Wang, K. Liu, X. M. Liu, K. Dohnalová, T. Gregorkiewicz, X. G. Kong, M. C. G. Aalders, W. J. Buma, and H. Zhang, J. Phys. Chem. Lett. 2, 2083 (2011).
[CrossRef]

Matsuura, D.

D. Matsuura, Appl. Phys. Lett. 81, 4526 (2002).
[CrossRef]

Moreno, N.

J. A. Feijo and N. Moreno, Protoplasma 223, 1 (2004).
[CrossRef]

Muhammad, I. N.

H. Guo, Z. Q. Li, H. S. Qian, Y. Hu, and I. N. Muhammad, Nanotechnology 21, 125602 (2010).
[CrossRef]

Ohulchanskyy, T. Y.

G. Y. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, ACS Nano 4, 3163 (2010).
[CrossRef]

Page, R. H.

Payne, S. A.

Pires, A. M.

A. M. Pires, O. A. Serra, S. Heer, and H. U. Güdel, J. Appl. Phys. 98, 063529 (2005).
[CrossRef]

Prasad, P. N.

G. Y. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, ACS Nano 4, 3163 (2010).
[CrossRef]

Qian, H. S.

H. Guo, Z. Q. Li, H. S. Qian, Y. Hu, and I. N. Muhammad, Nanotechnology 21, 125602 (2010).
[CrossRef]

Reinhard, C.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, Opt. Mater. 27, 1111 (2005).
[CrossRef]

Schaffers, K. I.

Serra, O. A.

A. M. Pires, O. A. Serra, S. Heer, and H. U. Güdel, J. Appl. Phys. 98, 063529 (2005).
[CrossRef]

Shen, D. K.

F. Zhang, R. C. Che, X. M. Li, C. Yao, J. P. Yang, D. K. Shen, P. Hu, W. Li, and D. Y. Zhao, Nano Lett. 12, 2852 (2012).
[CrossRef]

Stouwdam, J. W.

J. W. Stouwdam and F. C. J. M. van Veggel, Langmuir 20, 11763 (2004).
[CrossRef]

Suyver, J. F.

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, Opt. Mater. 27, 1111 (2005).
[CrossRef]

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Sveshnikov, E. B.

V. L. Ermolaev and E. B. Sveshnikov, Russ. Chem. Rev. 63, 905 (1994).
[CrossRef]

Tassano, J. B.

van Veggel, F. C. J. M.

J. W. Stouwdam and F. C. J. M. van Veggel, Langmuir 20, 11763 (2004).
[CrossRef]

Waide, P. A.

Wang, Y.

Y. Wang, K. Liu, X. M. Liu, K. Dohnalová, T. Gregorkiewicz, X. G. Kong, M. C. G. Aalders, W. J. Buma, and H. Zhang, J. Phys. Chem. Lett. 2, 2083 (2011).
[CrossRef]

Yang, J. P.

F. Zhang, R. C. Che, X. M. Li, C. Yao, J. P. Yang, D. K. Shen, P. Hu, W. Li, and D. Y. Zhao, Nano Lett. 12, 2852 (2012).
[CrossRef]

Yao, C.

F. Zhang, R. C. Che, X. M. Li, C. Yao, J. P. Yang, D. K. Shen, P. Hu, W. Li, and D. Y. Zhao, Nano Lett. 12, 2852 (2012).
[CrossRef]

Zhang, F.

F. Zhang, R. C. Che, X. M. Li, C. Yao, J. P. Yang, D. K. Shen, P. Hu, W. Li, and D. Y. Zhao, Nano Lett. 12, 2852 (2012).
[CrossRef]

Zhang, H.

Y. Wang, K. Liu, X. M. Liu, K. Dohnalová, T. Gregorkiewicz, X. G. Kong, M. C. G. Aalders, W. J. Buma, and H. Zhang, J. Phys. Chem. Lett. 2, 2083 (2011).
[CrossRef]

Zhang, Y.

Z. Q. Li and Y. Zhang, Nanotechnology 19, 345606 (2008).
[CrossRef]

Zhao, D. Y.

F. Zhang, R. C. Che, X. M. Li, C. Yao, J. P. Yang, D. K. Shen, P. Hu, W. Li, and D. Y. Zhao, Nano Lett. 12, 2852 (2012).
[CrossRef]

ACS Nano (1)

G. Y. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, ACS Nano 4, 3163 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

D. Matsuura, Appl. Phys. Lett. 81, 4526 (2002).
[CrossRef]

Chem. Rev. (1)

F. Auzel, Chem. Rev. 104, 139 (2004).
[CrossRef]

J. Appl. Phys. (1)

A. M. Pires, O. A. Serra, S. Heer, and H. U. Güdel, J. Appl. Phys. 98, 063529 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

Y. Wang, K. Liu, X. M. Liu, K. Dohnalová, T. Gregorkiewicz, X. G. Kong, M. C. G. Aalders, W. J. Buma, and H. Zhang, J. Phys. Chem. Lett. 2, 2083 (2011).
[CrossRef]

Langmuir (1)

J. W. Stouwdam and F. C. J. M. van Veggel, Langmuir 20, 11763 (2004).
[CrossRef]

Nano Lett. (1)

F. Zhang, R. C. Che, X. M. Li, C. Yao, J. P. Yang, D. K. Shen, P. Hu, W. Li, and D. Y. Zhao, Nano Lett. 12, 2852 (2012).
[CrossRef]

Nanotechnology (2)

Z. Q. Li and Y. Zhang, Nanotechnology 19, 345606 (2008).
[CrossRef]

H. Guo, Z. Q. Li, H. S. Qian, Y. Hu, and I. N. Muhammad, Nanotechnology 21, 125602 (2010).
[CrossRef]

Opt. Mater. (1)

J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, and H. U. Güdel, Opt. Mater. 27, 1111 (2005).
[CrossRef]

Phys. Rev. B (1)

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Protoplasma (1)

J. A. Feijo and N. Moreno, Protoplasma 223, 1 (2004).
[CrossRef]

Russ. Chem. Rev. (1)

V. L. Ermolaev and E. B. Sveshnikov, Russ. Chem. Rev. 63, 905 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

TEM images of NaYF4:Yb, Er core nanocrystals 25 nm (a), and NaYF4:Yb, Er/NaYF4 core-shell nanocrystals with different thickness shells, such as: (b) 2.5 nm, (c) 5.5 nm, (d) 8 nm, (e) 10.5 nm, and (f) 14.5 nm.

Fig. 2.
Fig. 2.

UC luminescence spectra of colloidal NaYF4:Yb20%, Er2% core and NaYF4:Yb, Er/NaYF4 core-shell nanocrystals with different thickness shells under 975 nm excitation. The inset shows the fluorescence photograph of the resulted nanocrystals under the same excitation power.

Fig. 3.
Fig. 3.

Intensity enhancement times of (measured and calculated) 540 nm and (measured) 654 nm UC emission of core-shell nanocrystals versus the corresponding shell thickness.

Fig. 4.
Fig. 4.

Energy-level diagram of Yb3+ and Er3+ ions and the proposed UC mechanism under 975 nm excitation.

Tables (1)

Tables Icon

Table 1. Measured Lifetimes of the F5/22(Yb3+) and H11/22/S3/24(Er3+) States, Calculated Enhancements for the 540 nm Emission in NaYF4:Yb, Er Nanocrystals with Different Thickness Shells Under 975 nm Excitation

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Iλ(d)Iλ(0)=Iλ()Iλ(0)(1Cexp(d/d0)),
dnYb1dt=ρσnYb0W0nYb1n0W1nYb1n1AYb1nYb1=0,
dn1dt=W0nYb1n0W1nYb1n1A1n1=0,
dn2dt=W1nYb1n1A2n2=0,
A2=A20+Wnon,
I540=A20n2=A20W1W0n0(ρσnYb0)2τYb12τ1τ2.
I540(d)/I540(0)=τYb1(d)3τ2(d)/τYb1(0)3τ2(0),

Metrics