Abstract

We tested the performance of a fast single-photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media. In combination with a femtosecond titanium:sapphire laser, the overall instrument temporal response time was 59 ps. Using two experimental models, we showed that the SPAD allowed measurement of photon-density sensitivity functions that were approximately 65% narrower than the ungated continuous wave case at very early times. This exceeds the performance that we have previously achieved with photomultiplier-tube-based systems and approaches the theoretical maximum predicted by time-resolved Monte Carlo simulations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Arridge, Inverse Probl. 15, R41 (1999).
    [CrossRef]
  2. S. Andersson-Engels, R. Berg, S. Svanberg, and O. Jarlman, Opt. Lett. 15, 1179 (1990).
    [CrossRef]
  3. J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, Proc. Natl. Acad. Sci. USA 94, 8783 (1997).
    [CrossRef]
  4. V. Venugopal, J. Chen, F. Lesage, and X. Intes, Opt. Lett. 35, 3189 (2010).
    [CrossRef]
  5. Z. Li and M. Niedre, Biomed. Opt. Express 2, 665 (2011).
    [CrossRef]
  6. N. Valim, J. Brock, M. Leeser, and M. Niedre, Phys. Med. Biol. 58, 335 (2013).
    [CrossRef]
  7. F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrara, E. Charbon, J. Ripoll, and M. Rudin, IEEE Trans. Med. Imaging 30, 1265 (2011).
    [CrossRef]
  8. A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, Opt. Express 19, 10735 (2011).
    [CrossRef]
  9. M. J. Niedre, G. M. Turner, and V. Ntziachristos, J. Biomed. Opt. 11, 064017 (2006).
    [CrossRef]

2013 (1)

N. Valim, J. Brock, M. Leeser, and M. Niedre, Phys. Med. Biol. 58, 335 (2013).
[CrossRef]

2011 (3)

2010 (1)

2006 (1)

M. J. Niedre, G. M. Turner, and V. Ntziachristos, J. Biomed. Opt. 11, 064017 (2006).
[CrossRef]

1999 (1)

S. R. Arridge, Inverse Probl. 15, R41 (1999).
[CrossRef]

1997 (1)

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, Proc. Natl. Acad. Sci. USA 94, 8783 (1997).
[CrossRef]

1990 (1)

Andersson-Engels, S.

Arridge, S. R.

S. R. Arridge, Inverse Probl. 15, R41 (1999).
[CrossRef]

Baltes, C.

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrara, E. Charbon, J. Ripoll, and M. Rudin, IEEE Trans. Med. Imaging 30, 1265 (2011).
[CrossRef]

Berg, R.

Brock, J.

N. Valim, J. Brock, M. Leeser, and M. Niedre, Phys. Med. Biol. 58, 335 (2013).
[CrossRef]

Carrara, L.

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrara, E. Charbon, J. Ripoll, and M. Rudin, IEEE Trans. Med. Imaging 30, 1265 (2011).
[CrossRef]

Charbon, E.

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrara, E. Charbon, J. Ripoll, and M. Rudin, IEEE Trans. Med. Imaging 30, 1265 (2011).
[CrossRef]

Chen, J.

Contini, D.

Cubeddu, R.

Dasari, R. R.

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, Proc. Natl. Acad. Sci. USA 94, 8783 (1997).
[CrossRef]

Dikaiou, K.

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrara, E. Charbon, J. Ripoll, and M. Rudin, IEEE Trans. Med. Imaging 30, 1265 (2011).
[CrossRef]

Feld, M. S.

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, Proc. Natl. Acad. Sci. USA 94, 8783 (1997).
[CrossRef]

Gulinatti, A.

Intes, X.

Jarlman, O.

Leeser, M.

N. Valim, J. Brock, M. Leeser, and M. Niedre, Phys. Med. Biol. 58, 335 (2013).
[CrossRef]

Lesage, F.

Li, Z.

Mora, A. D.

Niedre, M.

N. Valim, J. Brock, M. Leeser, and M. Niedre, Phys. Med. Biol. 58, 335 (2013).
[CrossRef]

Z. Li and M. Niedre, Biomed. Opt. Express 2, 665 (2011).
[CrossRef]

Niedre, M. J.

M. J. Niedre, G. M. Turner, and V. Ntziachristos, J. Biomed. Opt. 11, 064017 (2006).
[CrossRef]

Ntziachristos, V.

M. J. Niedre, G. M. Turner, and V. Ntziachristos, J. Biomed. Opt. 11, 064017 (2006).
[CrossRef]

Perelman, L.

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, Proc. Natl. Acad. Sci. USA 94, 8783 (1997).
[CrossRef]

Pifferi, A.

Ripoll, J.

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrara, E. Charbon, J. Ripoll, and M. Rudin, IEEE Trans. Med. Imaging 30, 1265 (2011).
[CrossRef]

Rudin, M.

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrara, E. Charbon, J. Ripoll, and M. Rudin, IEEE Trans. Med. Imaging 30, 1265 (2011).
[CrossRef]

Spinelli, L.

Stuker, F.

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrara, E. Charbon, J. Ripoll, and M. Rudin, IEEE Trans. Med. Imaging 30, 1265 (2011).
[CrossRef]

Svanberg, S.

Torricelli, A.

Tosi, A.

Turner, G. M.

M. J. Niedre, G. M. Turner, and V. Ntziachristos, J. Biomed. Opt. 11, 064017 (2006).
[CrossRef]

Valim, N.

N. Valim, J. Brock, M. Leeser, and M. Niedre, Phys. Med. Biol. 58, 335 (2013).
[CrossRef]

Vats, D.

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrara, E. Charbon, J. Ripoll, and M. Rudin, IEEE Trans. Med. Imaging 30, 1265 (2011).
[CrossRef]

Venugopal, V.

Wu, J.

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, Proc. Natl. Acad. Sci. USA 94, 8783 (1997).
[CrossRef]

Zappa, F.

Biomed. Opt. Express (1)

IEEE Trans. Med. Imaging (1)

F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrara, E. Charbon, J. Ripoll, and M. Rudin, IEEE Trans. Med. Imaging 30, 1265 (2011).
[CrossRef]

Inverse Probl. (1)

S. R. Arridge, Inverse Probl. 15, R41 (1999).
[CrossRef]

J. Biomed. Opt. (1)

M. J. Niedre, G. M. Turner, and V. Ntziachristos, J. Biomed. Opt. 11, 064017 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Med. Biol. (1)

N. Valim, J. Brock, M. Leeser, and M. Niedre, Phys. Med. Biol. 58, 335 (2013).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, Proc. Natl. Acad. Sci. USA 94, 8783 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic of the experimental system used for evaluation of SPAD detector in measurement of EPs. Abbreviations: lens 1,2 (L1, L2), filter (F), inverter and attenuator (I/A), variable attenuator (VA). (b) Measured instrument TIRF. (c) Measured TR curve through diffusive liquid phantom. The SPAD diffusion tail is evident (arrow, blue curve) compared to the TR curve measured with a PMT through the same media (see text).

Fig. 2.
Fig. 2.

(a) Measured TR curve through liquid phantom. (b) Measured PDSF profile in the center of the imaging chamber at five time points corresponding to the red arrows in (a), illustrating increasing photon scatter with time. (c) PDSF FWHM versus time. Error bars represent the standard deviation from three trials. (d) The relative PDSF FWHM (normalized to quasi-CW) as a function of time on the rising edge of the TR curve (normalized to fraction of peak) measured with the SPAD and obtained with TR-MC simulations. For comparison, the same curve measured with a PMT (TIRFFWHM=163ps) is shown.

Fig. 3.
Fig. 3.

(a) Cylindrical cast resin phantom with two absorbing inclusions. (b) Normalized measured intensity as a function of rotation angle for four time points along with quasi-CW data. (c) FWHM of PDSFs functions computed with TR-MC at the midplane of the phantom. (d) Simulated TR forward data, analogous to experimental measurements in (c). Example tomographic axial slice reconstructions of attenuation (normalized) are shown for (e) early (to 350 ps) and (f) quasi-CW data. The improved localization and separation of the targets (green dotted circles) with EPs is evident.

Metrics