Abstract

We present an ultrathin fiber-optic endoscopy probe for optical coherence tomography (OCT), which is made of a series of fused optical fibers instead of the conventional scheme based on an objective lens. The large-core fiber with a core diameter of 20 μm was utilized for the probe, while a single-mode fiber of core diameter 8.2 μm mainly delivered the OCT light. Those fibers were spliced with a bridge fiber of an intermediate core size. The guided light was stepwise converted to a beam of a large mode-field diameter to be radiated with a larger depth of focus. We obtained a 125 μm thick all-fiber endoscopy probe with a side-viewing capability implemented by an angled fiber end. Successful OCT imaging was demonstrated with a swept-source OCT system and showed the practical applicability of our lens-free endoscopy probe.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, J. Biomed. Opt. 11, 063001 (2006).
    [CrossRef]
  2. D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, Opt. Lett. 36, 3894 (2011).
    [CrossRef]
  3. U. Sharma and J. U. Kang, Rev. Sci. Instrum. 78, 113102 (2007).
    [CrossRef]
  4. S. Moon and Z. Chen, Appl. Opt. 51, 8262 (2012).
    [CrossRef]
  5. S. Moon, G. Liu, and Z. Chen, Opt. Lett. 36, 3362 (2011).
    [CrossRef]
  6. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000), pp. 78–83.
  7. K.-R. Kim and K. Oh, Appl. Opt. 42, 6261 (2003).
    [CrossRef]

2012 (1)

2011 (2)

2007 (1)

U. Sharma and J. U. Kang, Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef]

2006 (1)

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, J. Biomed. Opt. 11, 063001 (2006).
[CrossRef]

2003 (1)

Chen, Z.

Heng, X.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, J. Biomed. Opt. 11, 063001 (2006).
[CrossRef]

Kang, J. U.

U. Sharma and J. U. Kang, Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef]

Kim, K.-R.

Kirk, R. W.

Liu, G.

Lorenser, D.

McDowell, E. J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, J. Biomed. Opt. 11, 063001 (2006).
[CrossRef]

McLaughlin, R. A.

Moon, S.

Oh, K.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000), pp. 78–83.

Quirk, B. C.

Sampson, D. D.

Sharma, U.

U. Sharma and J. U. Kang, Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef]

Wu, J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, J. Biomed. Opt. 11, 063001 (2006).
[CrossRef]

Yang, C.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, J. Biomed. Opt. 11, 063001 (2006).
[CrossRef]

Yang, X.

Yaqoob, Z.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, J. Biomed. Opt. 11, 063001 (2006).
[CrossRef]

Appl. Opt. (2)

J. Biomed. Opt. (1)

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, J. Biomed. Opt. 11, 063001 (2006).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

U. Sharma and J. U. Kang, Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef]

Other (1)

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000), pp. 78–83.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of our bare-fiber OCT endoscopy probe in a protective capillary tube.

Fig. 2.
Fig. 2.

Change of the beam widths measured in the perpendicular and parallel axes for (a) the bare probe alone, (b) the probe in the capillary tube laid in the air, and (c) the probe in the capillary immerged in the index-matching gel.

Fig. 3.
Fig. 3.

OCT images of human finger tip and palm acquired by (a) a push–pull scan and (b) a circumferential scan. The length of the inset rectangle or square corresponds to 1 mm in air.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δt=δN·Lc=αnΔ·Lc

Metrics