Abstract

We propose a differential phase contrast imaging method in x-ray microscopy by utilizing a biased derivative filter, which is structurally similar to that used in visible optics, except that phase changes by the filter cannot be ignored in the x-ray range. However, it is demonstrated that the filter’s phase retardation does not disturb its function of phase contrast imaging, and even enhances the signals to some extent. Theoretical formulations and corresponding numerical simulations show that the approach is capable of performing characteristic differential microscopic phase imaging with nanometer-scale resolution. Manageable parameters are also examined in detail for pursuing a high image quality.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical development of a high-resolution differential-interference-contrast optic for x-ray microscopy

Olov von Hofsten, Michael Bertilson, and Ulrich Vogt
Opt. Express 16(2) 1132-1141 (2008)

Diffractive optical elements for differential interference contrast x-ray microscopy

Enzo Di Fabrizio, Dan Cojoc, Stefano Cabrini, Burkhard Kaulich, Jean Susini, Paolo Facci, and Thomas Wilhein
Opt. Express 11(19) 2278-2288 (2003)

Spiral phase contrast imaging in microscopy

Severin Fürhapter, Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 13(3) 689-694 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription