Abstract

We show both numerically and experimentally that intense, narrow, and low-divergence beams of light are produced at the apex of dielectric pyramid-shaped microtips. These beams exhibit a Bessel transverse profile but are narrower than the usual Bessel beam, allowing for a significant enhancement of the light intensity inside the beam. They are generated by axicon-like structures with submicrometric height imprinted in glass by combining optical lithography and chemical etching. The resulting beams are experimentally imaged using fluorescence microscopy, in remarkable agreement with numerical computations.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. McLeod, J. Opt. Soc. Am. 50, 166 (1960).
    [CrossRef]
  2. R. M. Herman and T. A. Wiggins, J. Opt. Soc. Am. A 8, 932 (1991).
    [CrossRef]
  3. V. V. Kotlyar, S. S. Stafeev, L. O’Faolain, and V. A. Soifer, Opt. Lett. 36, 3100 (2011).
    [CrossRef]
  4. T. Grosjean, D. Courjon, and C. Bainier, Opt. Lett. 32, 976 (2007).
    [CrossRef]
  5. K. Dholakia and T. Cizmar, Nat. Photon. 5, 335 (2011).
    [CrossRef]
  6. G. Barbillon, J.-L. Bijeon, G. Lerondel, J. Plain, and P. Royer, Surf. Sci. 602, L119 (2008).
    [CrossRef]
  7. OptiFDTD 10.1, from OptiWave (Ottawa, Ontario).
  8. T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, Appl. Opt. 46, 8061 (2007).
    [CrossRef]
  9. P. Ferrand, J. Wenger, M. Pianta, H. Rigneault, A. Devilez, B. Stout, N. Bonod, and E. Popov, Opt. Express 16, 6930 (2008).
    [CrossRef]
  10. J. Plain, Y. Sonnefraud, P. Viste, G. Lerondel, S. Huant, and P. Royer, J. Fluoresc. 19, 311 (2009).
    [CrossRef]
  11. J. Wenger, Int. J. Opt. 2012, 828121 (2012).
    [CrossRef]

2012 (1)

J. Wenger, Int. J. Opt. 2012, 828121 (2012).
[CrossRef]

2011 (2)

2009 (1)

J. Plain, Y. Sonnefraud, P. Viste, G. Lerondel, S. Huant, and P. Royer, J. Fluoresc. 19, 311 (2009).
[CrossRef]

2008 (2)

2007 (2)

1991 (1)

1960 (1)

Bainier, C.

Barbillon, G.

G. Barbillon, J.-L. Bijeon, G. Lerondel, J. Plain, and P. Royer, Surf. Sci. 602, L119 (2008).
[CrossRef]

Bijeon, J.-L.

G. Barbillon, J.-L. Bijeon, G. Lerondel, J. Plain, and P. Royer, Surf. Sci. 602, L119 (2008).
[CrossRef]

Bonod, N.

Charraut, D.

Cizmar, T.

K. Dholakia and T. Cizmar, Nat. Photon. 5, 335 (2011).
[CrossRef]

Courjon, D.

Devilez, A.

Dholakia, K.

K. Dholakia and T. Cizmar, Nat. Photon. 5, 335 (2011).
[CrossRef]

Ferrand, P.

Grosjean, T.

Herman, R. M.

Huant, S.

J. Plain, Y. Sonnefraud, P. Viste, G. Lerondel, S. Huant, and P. Royer, J. Fluoresc. 19, 311 (2009).
[CrossRef]

Ibrahim, I. A.

Kotlyar, V. V.

Lerondel, G.

J. Plain, Y. Sonnefraud, P. Viste, G. Lerondel, S. Huant, and P. Royer, J. Fluoresc. 19, 311 (2009).
[CrossRef]

G. Barbillon, J.-L. Bijeon, G. Lerondel, J. Plain, and P. Royer, Surf. Sci. 602, L119 (2008).
[CrossRef]

McLeod, J. H.

O’Faolain, L.

Pianta, M.

Piquerey, V.

Plain, J.

J. Plain, Y. Sonnefraud, P. Viste, G. Lerondel, S. Huant, and P. Royer, J. Fluoresc. 19, 311 (2009).
[CrossRef]

G. Barbillon, J.-L. Bijeon, G. Lerondel, J. Plain, and P. Royer, Surf. Sci. 602, L119 (2008).
[CrossRef]

Popov, E.

Rigneault, H.

Royer, P.

J. Plain, Y. Sonnefraud, P. Viste, G. Lerondel, S. Huant, and P. Royer, J. Fluoresc. 19, 311 (2009).
[CrossRef]

G. Barbillon, J.-L. Bijeon, G. Lerondel, J. Plain, and P. Royer, Surf. Sci. 602, L119 (2008).
[CrossRef]

Saleh, S. S.

Sandoz, P.

Soifer, V. A.

Sonnefraud, Y.

J. Plain, Y. Sonnefraud, P. Viste, G. Lerondel, S. Huant, and P. Royer, J. Fluoresc. 19, 311 (2009).
[CrossRef]

Stafeev, S. S.

Stout, B.

Suarez, M. A.

Viste, P.

J. Plain, Y. Sonnefraud, P. Viste, G. Lerondel, S. Huant, and P. Royer, J. Fluoresc. 19, 311 (2009).
[CrossRef]

Wenger, J.

Wiggins, T. A.

Appl. Opt. (1)

Int. J. Opt. (1)

J. Wenger, Int. J. Opt. 2012, 828121 (2012).
[CrossRef]

J. Fluoresc. (1)

J. Plain, Y. Sonnefraud, P. Viste, G. Lerondel, S. Huant, and P. Royer, J. Fluoresc. 19, 311 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nat. Photon. (1)

K. Dholakia and T. Cizmar, Nat. Photon. 5, 335 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Surf. Sci. (1)

G. Barbillon, J.-L. Bijeon, G. Lerondel, J. Plain, and P. Royer, Surf. Sci. 602, L119 (2008).
[CrossRef]

Other (1)

OptiFDTD 10.1, from OptiWave (Ottawa, Ontario).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) AFM image of a microtip array. Scale bar is 2 μm. (Inset) Zoom on a single microtip. (b) Finite-difference time-domain (FDTD) computation of the optical intensity transmitted through a single microtip at excitation wavelength λ=405nm, using the geometrical parameters taken from the AFM image. (c) Blue line, transverse beam profile [taken along the white line of (b)]; red dotted line, fit of the intensity profile by a zero-order Bessel function I(r)=AJ02(kr), where A=4.12 and k=3.49μm1.

Fig. 2.
Fig. 2.

(a) Schematic of the experimental setup for beam imaging. (b) Fluorescence spectra measured above a microtip, and QD reference spectrum (QDs on glass substrate). (Inset) Typical wide-field fluorescence image obtained with our setup. Bright dots correspond to the microtip positions.

Fig. 3.
Fig. 3.

(a) Fluorescence image of the beam (in the xz plane) using the setup described in Fig. 2(a). The fluorescence intensity was normalized with respect to the intensity collected in a zone without a microtip in order to obtain the fluorescence enhancement. (Inset) 2.3×2.3μm2 fluorescence images in the xy plane at different heights. (b) FDTD calculation of the field intensity transmitted through the same glass microtip. The geometrical parameters of the tip are height 280 nm, tip half-angle 78°. (c) Direct comparison of the experiment and the computation along the vertical axis at x=0.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FWHM=(1.4±0.1)λ.

Metrics