Abstract

We show both numerically and experimentally that intense, narrow, and low-divergence beams of light are produced at the apex of dielectric pyramid-shaped microtips. These beams exhibit a Bessel transverse profile but are narrower than the usual Bessel beam, allowing for a significant enhancement of the light intensity inside the beam. They are generated by axicon-like structures with submicrometric height imprinted in glass by combining optical lithography and chemical etching. The resulting beams are experimentally imaged using fluorescence microscopy, in remarkable agreement with numerical computations.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips

Patrick Lambelet, Abdeljalil Sayah, Michael Pfeffer, Claude Philipona, and Fabienne Marquis-Weible
Appl. Opt. 37(31) 7289-7292 (1998)

Plasmonic focusing of infrared SNOM tip patterned with asymmetric structures

Qinbai Qian, Haochi Yu, Peng Gou, Jie Xu, and Zhenghua An
Opt. Express 23(10) 12923-12934 (2015)

Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering

Hsin-Hung Cheng, Shih-Wen Chen, Ying-Yu Chang, Jen-You Chu, Ding-Zheng Lin, Yi-Ping Chen, and Jia-Han Li
Opt. Express 19(22) 22125-22141 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription