Abstract

In this Letter we propose a fast off-axis hologram autofocusing (AF) approach that is based on the redundant data elimination by the critical resampling of the contained complex field. Implementation of the proposed methodology enables the real-time AF with up to 12× speed-up factors in comparison to the classical approach. The method is further extended for single-shot physical autofocus of the fluorescence imaging channel of multimodal imaging instruments capable of off-axis hologram acquisition.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
    [CrossRef]
  2. D. Gabor, Nature 161, 777 (1948).
    [CrossRef]
  3. E. Leith and J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962).
    [CrossRef]
  4. P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, Opt. Lett. 30, 468 (2005).
    [CrossRef]
  5. N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, J. Biophotonics 3, 432 (2010).
    [CrossRef]
  6. M. Toy, S. Richard, J. Kühn, A. Franco-Obregón, M. Egli, and C. Depeursinge, Biomed. Opt. Express 3, 313 (2012).
    [CrossRef]
  7. N. Pavillon, C. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, Appl. Opt. 48, H186 (2009).
    [CrossRef]
  8. E. Cuche, P. Marquet, and C. Depeursinge, Opt. Commun. 182, 59 (2000).
    [CrossRef]
  9. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, Appl. Opt. 45, 851 (2006).
    [CrossRef]
  10. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, Appl. Opt. 47, D176 (2008).
    [CrossRef]
  11. P. Gao, B. Yao, R. Rupp, J. Min, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, and T. Ye, Opt. Lett. 37, 1172 (2012).
    [CrossRef]
  12. R. P. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, 1973).
  13. F. Dubois and C. Yourassowsky, “Method and device for obtaining a sample with three-dimensional microscopy,” U.S. patent7,009,700 (7March2006).
  14. E. Shaffer, P. Marquet, and C. Depeursinge, Opt. Express 18, 17392 (2010).
    [CrossRef]

2012

2010

E. Shaffer, P. Marquet, and C. Depeursinge, Opt. Express 18, 17392 (2010).
[CrossRef]

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, J. Biophotonics 3, 432 (2010).
[CrossRef]

2009

2008

2006

2005

2000

E. Cuche, P. Marquet, and C. Depeursinge, Opt. Commun. 182, 59 (2000).
[CrossRef]

1967

J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

1962

1948

D. Gabor, Nature 161, 777 (1948).
[CrossRef]

Aspert, N.

Benke, A.

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, J. Biophotonics 3, 432 (2010).
[CrossRef]

Boss, D.

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, J. Biophotonics 3, 432 (2010).
[CrossRef]

Brent, R. P.

R. P. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, 1973).

Charrière, F.

Colomb, T.

Cuche, E.

Dan, D.

Depeursinge, C.

Dirksen, D.

Dubois, F.

F. Dubois and C. Yourassowsky, “Method and device for obtaining a sample with three-dimensional microscopy,” U.S. patent7,009,700 (7March2006).

Egli, M.

Emery, Y.

Franco-Obregón, A.

Gabor, D.

D. Gabor, Nature 161, 777 (1948).
[CrossRef]

Gao, P.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

Guo, R.

Jourdain, P.

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, J. Biophotonics 3, 432 (2010).
[CrossRef]

Kemper, B.

Kühn, J.

Langehanenberg, P.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

Lei, M.

Leith, E.

Ma, B.

Magistretti, P.

Magistretti, P. J.

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, J. Biophotonics 3, 432 (2010).
[CrossRef]

Marquet, P.

Min, J.

Montfort, F.

Moratal, C.

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, J. Biophotonics 3, 432 (2010).
[CrossRef]

Pavillon, N.

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, J. Biophotonics 3, 432 (2010).
[CrossRef]

N. Pavillon, C. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, Appl. Opt. 48, H186 (2009).
[CrossRef]

Rappaz, B.

Richard, S.

Rupp, R.

Seelamantula, C.

Shaffer, E.

Toy, M.

Unser, M.

Upatnieks, J.

von Bally, G.

Yan, S.

Yao, B.

Ye, T.

Yourassowsky, C.

F. Dubois and C. Yourassowsky, “Method and device for obtaining a sample with three-dimensional microscopy,” U.S. patent7,009,700 (7March2006).

Zheng, J.

Appl. Opt.

Appl. Phys. Lett.

J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

Biomed. Opt. Express

J. Biophotonics

N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, J. Biophotonics 3, 432 (2010).
[CrossRef]

J. Opt. Soc. Am.

Nature

D. Gabor, Nature 161, 777 (1948).
[CrossRef]

Opt. Commun.

E. Cuche, P. Marquet, and C. Depeursinge, Opt. Commun. 182, 59 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. P. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, 1973).

F. Dubois and C. Yourassowsky, “Method and device for obtaining a sample with three-dimensional microscopy,” U.S. patent7,009,700 (7March2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(Left) Off-axis hologram and (right) its spectrum are depicted with the tilt of reference wave field on x axis (gray) or in diagonal (red), where I O and I R are the intensities, s o is the size of the discrete Fourier spectral support of the object field, and N is the count of p -sized pixels.

Fig. 2.
Fig. 2.

(a) Block diagram illustrating the steps involved for AF with two subsections of complex field decoding and iterative propagation. Exemplary images (b)–(g) are given for an experimental hologram at the output of every step in complex field decoding: (b) acquired hologram, (c) its log scale spectrum, (d) cropped spectrum, (e) filtered and cropped spectrum, and phase map in hologram plane (prior to propagation) (f) before and (g) after numerical lens.

Fig. 3.
Fig. 3.

(a) Schematic illustrating the critical elements in the DH-epifluorescence dual-mode microscope. The filter cube includes a dichroic beam splitter (D-BS) ( λ cut-off D-BS = 500 nm ) along with the short pass excitation (ExF) ( λ cut-off ExF = 500 nm ) and long pass emission (EmF) ( λ cut-off EmF = 500 nm ) filters. (b) Axial sample position and DHM mode AF distance relation for experimental calibration (solid red) and the approximation by axial magnification (dashed blue). (c), (d) Live cell fluorescence imaging (c) without and (d) with DHM-fed refocusing.

Tables (1)

Tables Icon

Table 1. Computational Performance Comparison of AF with and without Spectral Cropping

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

s O max N 4 when ( s c ( u , 0 ) 0 s c ( 0 , v ) 0 ) s O max 2 N 2 + 3 2 when ( s c ( u , u ) 0 ) .
s O = N · p M NA α · λ ,

Metrics