Abstract

We address the reconstruction problem in frequency-domain optical-coherence tomography (FDOCT) from undersampled measurements within the framework of compressed sensing (CS). Specifically, we propose optimal sparsifying bases for accurate reconstruction by analyzing the backscattered signal model. Although one might expect Fourier bases to be optimal for the FDOCT reconstruction problem, it turns out that the optimal sparsifying bases are windowed cosine functions where the window is the magnitude spectrum of the laser source. Further, the windowed cosine bases can be phase locked, which allows one to obtain higher accuracy in reconstruction. We present experimental validations on real data. The findings reported in this Letter are useful for optimal dictionary design within the framework of CS-FDOCT.

© 2012 Optical Society of America

Full Article  |  PDF Article
Related Articles
Compressive imaging: hybrid measurement basis design

Amit Ashok and Mark A. Neifeld
J. Opt. Soc. Am. A 28(6) 1041-1050 (2011)

Sparsity based denoising of spectral domain optical coherence tomography images

Leyuan Fang, Shutao Li, Qing Nie, Joseph A. Izatt, Cynthia A. Toth, and Sina Farsiu
Biomed. Opt. Express 3(5) 927-942 (2012)

Denoising infrared maritime imagery using tailored dictionaries via modified K-SVD algorithm

L. N. Smith, C. C. Olson, K. P. Judd, and J. M. Nichols
Appl. Opt. 51(17) 3941-3949 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription