Abstract

Subpixel methods increase the accuracy and efficiency of image detectors, processing units, and algorithms and provide very cost-effective systems for object tracking. Published methods achieve resolution increases up to three orders of magnitude. In this Letter, we demonstrate that this limit can be theoretically improved by several orders of magnitude, permitting micropixel and submicropixel accuracies. The necessary condition for movement detection is that one single pixel changes its status. We show that an appropriate target design increases the probability of a pixel change for arbitrarily small shifts, thus increasing the detection accuracy of a tracking system. The proposal does not impose severe restriction on the target nor on the sensor, thus allowing easy experimental implementation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Kashter, O. Levi, and A. Stern, Appl. Opt. 51, 2491 (2012).
    [CrossRef]
  2. A. M. Bruckstein, L. O’Gorman, and A. Orlitsky, IEEE Trans. Inf. Theory 44, 3156 (1998).
    [CrossRef]
  3. S. H. Lee, M. Baday, M. Tjioe, P. D. Simonson, R. Zhang, E. Cai, and P. R. Selvin, Opt. Express 20, 12177 (2012).
    [CrossRef]
  4. D. Mas, J. Espinosa, A. B. Roig, B. Ferrer, J. Perez, and C. Illueca, Appl. Opt. 51, 2664 (2012).
    [CrossRef]
  5. R. Kurita and E. R. Weeks, Phys. Rev. E 82, 011403 (2010).
    [CrossRef]
  6. J. P. Ryle, M. Al-Kalbani, N. Collins, U. Gopinathan, G. Boyle, D. Coakley, and J. T. Sheridan, J. Biomed. Opt. 14, 014021 (2009).
    [CrossRef]

2012 (3)

2010 (1)

R. Kurita and E. R. Weeks, Phys. Rev. E 82, 011403 (2010).
[CrossRef]

2009 (1)

J. P. Ryle, M. Al-Kalbani, N. Collins, U. Gopinathan, G. Boyle, D. Coakley, and J. T. Sheridan, J. Biomed. Opt. 14, 014021 (2009).
[CrossRef]

1998 (1)

A. M. Bruckstein, L. O’Gorman, and A. Orlitsky, IEEE Trans. Inf. Theory 44, 3156 (1998).
[CrossRef]

Al-Kalbani, M.

J. P. Ryle, M. Al-Kalbani, N. Collins, U. Gopinathan, G. Boyle, D. Coakley, and J. T. Sheridan, J. Biomed. Opt. 14, 014021 (2009).
[CrossRef]

Baday, M.

Boyle, G.

J. P. Ryle, M. Al-Kalbani, N. Collins, U. Gopinathan, G. Boyle, D. Coakley, and J. T. Sheridan, J. Biomed. Opt. 14, 014021 (2009).
[CrossRef]

Bruckstein, A. M.

A. M. Bruckstein, L. O’Gorman, and A. Orlitsky, IEEE Trans. Inf. Theory 44, 3156 (1998).
[CrossRef]

Cai, E.

Coakley, D.

J. P. Ryle, M. Al-Kalbani, N. Collins, U. Gopinathan, G. Boyle, D. Coakley, and J. T. Sheridan, J. Biomed. Opt. 14, 014021 (2009).
[CrossRef]

Collins, N.

J. P. Ryle, M. Al-Kalbani, N. Collins, U. Gopinathan, G. Boyle, D. Coakley, and J. T. Sheridan, J. Biomed. Opt. 14, 014021 (2009).
[CrossRef]

Espinosa, J.

Ferrer, B.

Gopinathan, U.

J. P. Ryle, M. Al-Kalbani, N. Collins, U. Gopinathan, G. Boyle, D. Coakley, and J. T. Sheridan, J. Biomed. Opt. 14, 014021 (2009).
[CrossRef]

Illueca, C.

Kashter, Y.

Kurita, R.

R. Kurita and E. R. Weeks, Phys. Rev. E 82, 011403 (2010).
[CrossRef]

Lee, S. H.

Levi, O.

Mas, D.

O’Gorman, L.

A. M. Bruckstein, L. O’Gorman, and A. Orlitsky, IEEE Trans. Inf. Theory 44, 3156 (1998).
[CrossRef]

Orlitsky, A.

A. M. Bruckstein, L. O’Gorman, and A. Orlitsky, IEEE Trans. Inf. Theory 44, 3156 (1998).
[CrossRef]

Perez, J.

Roig, A. B.

Ryle, J. P.

J. P. Ryle, M. Al-Kalbani, N. Collins, U. Gopinathan, G. Boyle, D. Coakley, and J. T. Sheridan, J. Biomed. Opt. 14, 014021 (2009).
[CrossRef]

Selvin, P. R.

Sheridan, J. T.

J. P. Ryle, M. Al-Kalbani, N. Collins, U. Gopinathan, G. Boyle, D. Coakley, and J. T. Sheridan, J. Biomed. Opt. 14, 014021 (2009).
[CrossRef]

Simonson, P. D.

Stern, A.

Tjioe, M.

Weeks, E. R.

R. Kurita and E. R. Weeks, Phys. Rev. E 82, 011403 (2010).
[CrossRef]

Zhang, R.

Appl. Opt. (2)

IEEE Trans. Inf. Theory (1)

A. M. Bruckstein, L. O’Gorman, and A. Orlitsky, IEEE Trans. Inf. Theory 44, 3156 (1998).
[CrossRef]

J. Biomed. Opt. (1)

J. P. Ryle, M. Al-Kalbani, N. Collins, U. Gopinathan, G. Boyle, D. Coakley, and J. T. Sheridan, J. Biomed. Opt. 14, 014021 (2009).
[CrossRef]

Opt. Express (1)

Phys. Rev. E (1)

R. Kurita and E. R. Weeks, Phys. Rev. E 82, 011403 (2010).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (1767 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Detection of a horizontal displacement with accuracy 0.25 px with the random cloud target (Media 1).

Fig. 2.
Fig. 2.

Histogram and cumulative histogram of threshold shifts needed to detect an incremental displacement in the target with M=50,000 dots.

Fig. 3.
Fig. 3.

Detection accuracy of the sparse target method according to the 80th percentile and the maximum threshold criteria for a sparse target size M from 103 to 105px, defined on support matrices of 512×512px.

Metrics