Abstract

We report that low-loss ridge waveguides are directly written on nanoporous silicon layers by using an argon-ion laser at 514 nm up to 100 mW. Optical characterization of the waveguides indicates light propagation loss lower than 0.5dB/cm at 1550 nm after oxidation. A Mach–Zehnder interferometer sensor is experimentally demonstrated using the waveguide in its sensing branch, and analytical results indicate that very high sensitivity can be achieved. With large internal surface area, versatile surface chemistry, and adjustable index of refraction of porous silicon, the ridge waveguides can be used to configure Mach–Zehnder interferometers, Young’s interferometers, and other photonic devices for highly sensitive optical biosensors and chemical sensors as well as other applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Heideman and P. V. Lambeck, Sens. Actuators B 61, 100 (1999).
    [CrossRef]
  2. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Biosens. Bioelectron. 22, 2591 (2007).
    [CrossRef]
  3. A. Ksendzov and Y. Lin, Opt. Lett. 30, 3344 (2005).
    [CrossRef]
  4. J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, Nano Lett. 11, 1857 (2011).
    [CrossRef]
  5. A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, Appl. Phys. Lett. 78, 3003 (2001).
    [CrossRef]
  6. W. Li, S. E. Webster, R. Kumaran, S. Penson, and T. Tiedje, Appl. Opt. 49, 586 (2010).
    [CrossRef]
  7. F. P. Payne and J. P. R. Lacey, Opt. Quantum Electron. 26, 977 (1994).
    [CrossRef]
  8. H. Schmid, A. Delâge, B. Lamontagne, J. Lapointe, S. Janz, P. Cheben, A. Densmore, P. Waldron, D. X. Xu, and K. P. Yap, Opt. Lett. 33, 1479 (2008).
    [CrossRef]
  9. P. Ferrand and R. Romestain, Appl. Phys. Lett. 77, 3535 (2000).
    [CrossRef]
  10. P. Pirasteh, J. Charrier, Y. Dumeige, S. Haesaert, and P. Joubert, J. Appl. Phys. 101, 083110 (2007).
    [CrossRef]
  11. E. J. Teo, A. A. Bettiol, P. Yang, M. B. H. Breese, B. Q. Xiong, G. Z. Mashanovich, W. R. Headley, and G. T. Reed, Opt. Lett. 34, 659 (2009).
    [CrossRef]
  12. S. H. Hsu and Y. T. Huang, Opt. Lett. 30, 2897 (2005).
    [CrossRef]

2011 (1)

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, Nano Lett. 11, 1857 (2011).
[CrossRef]

2010 (1)

2009 (1)

2008 (1)

2007 (2)

P. Pirasteh, J. Charrier, Y. Dumeige, S. Haesaert, and P. Joubert, J. Appl. Phys. 101, 083110 (2007).
[CrossRef]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Biosens. Bioelectron. 22, 2591 (2007).
[CrossRef]

2005 (2)

2001 (1)

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, Appl. Phys. Lett. 78, 3003 (2001).
[CrossRef]

2000 (1)

P. Ferrand and R. Romestain, Appl. Phys. Lett. 77, 3535 (2000).
[CrossRef]

1999 (1)

R. G. Heideman and P. V. Lambeck, Sens. Actuators B 61, 100 (1999).
[CrossRef]

1994 (1)

F. P. Payne and J. P. R. Lacey, Opt. Quantum Electron. 26, 977 (1994).
[CrossRef]

Amato, G.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, Appl. Phys. Lett. 78, 3003 (2001).
[CrossRef]

Bettiol, A. A.

Boarino, L.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, Appl. Phys. Lett. 78, 3003 (2001).
[CrossRef]

Borini, S.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, Appl. Phys. Lett. 78, 3003 (2001).
[CrossRef]

Brandenburg, A.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Biosens. Bioelectron. 22, 2591 (2007).
[CrossRef]

Breese, M. B. H.

Camarchia, V.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, Appl. Phys. Lett. 78, 3003 (2001).
[CrossRef]

Charrier, J.

P. Pirasteh, J. Charrier, Y. Dumeige, S. Haesaert, and P. Joubert, J. Appl. Phys. 101, 083110 (2007).
[CrossRef]

Cheben, P.

Delâge, A.

Densmore, A.

Dumeige, Y.

P. Pirasteh, J. Charrier, Y. Dumeige, S. Haesaert, and P. Joubert, J. Appl. Phys. 101, 083110 (2007).
[CrossRef]

Ferrand, P.

P. Ferrand and R. Romestain, Appl. Phys. Lett. 77, 3535 (2000).
[CrossRef]

Haesaert, S.

P. Pirasteh, J. Charrier, Y. Dumeige, S. Haesaert, and P. Joubert, J. Appl. Phys. 101, 083110 (2007).
[CrossRef]

Headley, W. R.

Heideman, R. G.

R. G. Heideman and P. V. Lambeck, Sens. Actuators B 61, 100 (1999).
[CrossRef]

Hoffmann, C.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Biosens. Bioelectron. 22, 2591 (2007).
[CrossRef]

Hsu, S. H.

Huang, Y. T.

Janz, S.

Joubert, P.

P. Pirasteh, J. Charrier, Y. Dumeige, S. Haesaert, and P. Joubert, J. Appl. Phys. 101, 083110 (2007).
[CrossRef]

Ksendzov, A.

Kumaran, R.

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, Opt. Quantum Electron. 26, 977 (1994).
[CrossRef]

Lambeck, P. V.

R. G. Heideman and P. V. Lambeck, Sens. Actuators B 61, 100 (1999).
[CrossRef]

Lamontagne, B.

Lapointe, J.

Li, W.

Lin, Y.

Liscidini, M.

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, Nano Lett. 11, 1857 (2011).
[CrossRef]

Mashanovich, G. Z.

Meyrueis, P.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Biosens. Bioelectron. 22, 2591 (2007).
[CrossRef]

Payne, F. P.

F. P. Payne and J. P. R. Lacey, Opt. Quantum Electron. 26, 977 (1994).
[CrossRef]

Penson, S.

Pirasteh, P.

P. Pirasteh, J. Charrier, Y. Dumeige, S. Haesaert, and P. Joubert, J. Appl. Phys. 101, 083110 (2007).
[CrossRef]

Reed, G. T.

Romestain, R.

P. Ferrand and R. Romestain, Appl. Phys. Lett. 77, 3535 (2000).
[CrossRef]

Rossi, A. M.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, Appl. Phys. Lett. 78, 3003 (2001).
[CrossRef]

Ryckman, J. D.

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, Nano Lett. 11, 1857 (2011).
[CrossRef]

Schirmer, B.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Biosens. Bioelectron. 22, 2591 (2007).
[CrossRef]

Schmid, H.

Schmitt, K.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Biosens. Bioelectron. 22, 2591 (2007).
[CrossRef]

Sipe, J. E.

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, Nano Lett. 11, 1857 (2011).
[CrossRef]

Teo, E. J.

Tiedje, T.

Waldron, P.

Webster, S. E.

Weiss, S. M.

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, Nano Lett. 11, 1857 (2011).
[CrossRef]

Xiong, B. Q.

Xu, D. X.

Yang, P.

Yap, K. P.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, Appl. Phys. Lett. 78, 3003 (2001).
[CrossRef]

P. Ferrand and R. Romestain, Appl. Phys. Lett. 77, 3535 (2000).
[CrossRef]

Biosens. Bioelectron. (1)

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Biosens. Bioelectron. 22, 2591 (2007).
[CrossRef]

J. Appl. Phys. (1)

P. Pirasteh, J. Charrier, Y. Dumeige, S. Haesaert, and P. Joubert, J. Appl. Phys. 101, 083110 (2007).
[CrossRef]

Nano Lett. (1)

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, Nano Lett. 11, 1857 (2011).
[CrossRef]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, Opt. Quantum Electron. 26, 977 (1994).
[CrossRef]

Sens. Actuators B (1)

R. G. Heideman and P. V. Lambeck, Sens. Actuators B 61, 100 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scanning electron microscope images of the waveguide: (a) cross section, (b) top view of porous silicon waveguide surface.

Fig. 2.
Fig. 2.

Surface scattering light intensity of a typical waveguide as a function of propagation distance. (Inset) Top view picture of scattered light along the waveguide.

Fig. 3.
Fig. 3.

Schematic diagram of experimental setup.

Fig. 4.
Fig. 4.

(a) Signal intensity of the sensor as a function of time. (b) Change in effective index of refraction of waveguide versus time.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I=I1+I2+2I1I2cosΔΦ,
ΔΦ=2πLλ(neff+Δneff)+ϕ0,

Metrics