Abstract

A compact wavefront camera that allows users to quantitatively measure the intensity and wavefront at a remote object plane is reported. The camera is built from a chip-scale wavefront sensor that we previously developed. By measuring the wavefront of the image and calibrating the wavefront relationship between the image and object planes, the wavefront at the object plane can be computed and the surface normal of the object can be derived. We built a prototype camera and calibrated the wavefront relationship. In a proof-of-concept experiment, a set of concave mirrors with different focal lengths (50–200 mm), were imaged. The results agree well with their expected values. To demonstrate the application of the camera, we applied this method to measure the deformation of a microfluidic channel under pressure.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wilson and C. R. Jenkins, Mon. Not. R. Astron. Soc. 278, 39 (1996).
  2. T. Salmon, L. Thibos, and A. Bradley, J. Opt. Soc. Am. A 15, 2457 (1998).
    [CrossRef]
  3. J. Primot and L. Sogno, J. Opt. Soc. Am. A 12, 2679 (1995).
    [CrossRef]
  4. R. Cudney, Opt. Express 19, 17396 (2011).
    [CrossRef]
  5. R. Ng, M. Leovy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR 2005-02 (Stanford University, 2005).
  6. P. Gill, C. Lee, D. Lee, A. Wang, and A. Molnar, Opt. Lett. 36, 2949 (2011).
    [CrossRef]
  7. X. Cui, J. Ren, G. Tearney, and C. Yang, Opt. Express 18, 16685 (2010).
    [CrossRef]
  8. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2004).

2011 (2)

2010 (1)

1998 (1)

1996 (1)

R. W. Wilson and C. R. Jenkins, Mon. Not. R. Astron. Soc. 278, 39 (1996).

1995 (1)

Bradley, A.

Bredif, M.

R. Ng, M. Leovy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR 2005-02 (Stanford University, 2005).

Cudney, R.

Cui, X.

Duval, G.

R. Ng, M. Leovy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR 2005-02 (Stanford University, 2005).

Gill, P.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2004).

Hanrahan, P.

R. Ng, M. Leovy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR 2005-02 (Stanford University, 2005).

Horowitz, M.

R. Ng, M. Leovy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR 2005-02 (Stanford University, 2005).

Jenkins, C. R.

R. W. Wilson and C. R. Jenkins, Mon. Not. R. Astron. Soc. 278, 39 (1996).

Lee, C.

Lee, D.

Leovy, M.

R. Ng, M. Leovy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR 2005-02 (Stanford University, 2005).

Molnar, A.

Ng, R.

R. Ng, M. Leovy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR 2005-02 (Stanford University, 2005).

Primot, J.

Ren, J.

Salmon, T.

Sogno, L.

Tearney, G.

Thibos, L.

Wang, A.

Wilson, R. W.

R. W. Wilson and C. R. Jenkins, Mon. Not. R. Astron. Soc. 278, 39 (1996).

Yang, C.

J. Opt. Soc. Am. A (2)

Mon. Not. R. Astron. Soc. (1)

R. W. Wilson and C. R. Jenkins, Mon. Not. R. Astron. Soc. 278, 39 (1996).

Opt. Express (2)

Opt. Lett. (1)

Other (2)

R. Ng, M. Leovy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR 2005-02 (Stanford University, 2005).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Photographs of (a) the wavefront sensor chip with a U.S. dime and (b) the prototype wavefront camera.

Fig. 2.
Fig. 2.

Wavefront calibration: (a) the relationship between the scan angle and the centroid displacement, (b) the vector map of the fitting parameter—the offset, and (c) the vector map of the fitting parameter—the slope.

Fig. 3.
Fig. 3.

Validation experiments: (a) the vector map of the measured wavefront (centroid displacement) for a 200 mm concave mirror, (b) the vector map of the surface normal deduced from (a), and (c) the comparison of the measured and the expected surface normal profiles (along the horizontal direction).

Fig. 4.
Fig. 4.

Deformation of a microfluidic channel: (a) the photography of the microfluidic chip, (b) the horizontal direction surface normal of the channel under high pressure, and (c) the horizontal direction surface normal of the channel under low pressure. The unit of the color bars is degree.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ui(x,y)=1|M|Uo(xM,yM),
Ai(kx,ky)=|M|Ao(Mkx,Mky),
Ais(kx,ky)=Air(kxδkxM,kyδkyM),δkx=2kθx,δky=2kθy;whileδkx,δkxk,

Metrics