Abstract

Organs such as the heart and brain possess intricate fiber structures that are best characterized with three-dimensional imaging. For instance, diffusion-based, magnetic resonance tractography (MRT) enables studies of connectivity and remodeling during development and disease macroscopically on the millimeter scale. Here we present complementary, high-resolution microscopic optical coherence imaging and analysis methods that, when used in conjunction with clearing techniques, can characterize fiber architecture in intact organs at tissue depths exceeding 1 mm. We anticipate that these techniques can be used to study fiber architecture in situ at microscopic scales not currently accessible to diffusion magentic resonance (MR), and thus, to validate and complement macroscopic structural imaging techniques. Moreover, as these techniques use intrinsic signals and do not require tissue slicing and staining, they can be used for high-throughput, nondestructive evaluation of fiber architecture across large tissue volumes.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide-field optical coherence microscopy of the mouse brain slice

Eunjung Min, Junwon Lee, Andrey Vavilin, Sunwoo Jung, Sungwon Shin, Jeehyun Kim, and Woonggyu Jung
Opt. Lett. 40(19) 4420-4423 (2015)

Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography

Yu Gan and Christine P. Fleming
Biomed. Opt. Express 4(10) 2150-2165 (2013)

Polarization sensitive optical coherence microscopy for brain imaging

Hui Wang, Taner Akkin, Caroline Magnain, Ruopeng Wang, Jay Dubb, William J Kostis, Mohammad A Yaseen, Avilash Cramer, Sava Sakadžić, and David Boas
Opt. Lett. 41(10) 2213-2216 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription