Abstract

In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power significantly. By combining two distributed Bragg reflector tapered diode lasers we achieve a 2.5–3.2 fold increase in power and a maximum of 3.9 W of diffraction-limited green light. At this power level, green diode laser systems have a high application potential, e.g., within the biomedical field. Our concept can be expanded combining multiple diode lasers to increase the power even further.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
    [CrossRef]
  2. E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, Opt. Lett. 27, 1168 (2002).
    [CrossRef]
  3. J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
    [CrossRef]
  4. T. Gün, P. Metz, and G. Huber, Opt. Lett. 36, 1002 (2011).
    [CrossRef]
  5. T. Meier, B. Willke, and K. Danzmann, Opt. Lett. 35, 3742 (2010).
    [CrossRef]
  6. L. McDonagh and R. Wallenstein, Opt. Lett. 32, 802 (2007).
    [CrossRef]
  7. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, Opt. Express 16, 11294 (2008).
    [CrossRef]
  8. B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, IEEE Sel. Top. Quantum Electron. 15, 1009 (2009).
    [CrossRef]
  9. O. B. Jensen, P. E. Andersen, B. Sumpf, K.-H. Hasler, G. Erbert, and P. M. Petersen, Opt. Express 17, 6532 (2009).
    [CrossRef]
  10. A. Müller, O. B. Jensen, A. Unterhuber, T. Le, A. Stingl, K.-H. Hasler, B. Sumpf, G. Erbert, P. E. Andersen, and P. M. Petersen, Opt. Express 19, 12156 (2011).
    [CrossRef]
  11. T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
    [CrossRef]
  12. A. Müller, D. Vijayakumar, O. B. Jensen, K.-H. Hasler, B. Sumpf, G. Erbert, P. E. Andersen, and P. M. Petersen, Opt. Express 19, 1228 (2011).
    [CrossRef]
  13. O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, Opt. Commun. 282, 2560 (2009).
    [CrossRef]
  14. G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  15. E. Karamehmedović, C. Pedersen, O. B. Jensen, and P. Tidemand-Lichtenberg, Appl. Phys. B 96, 409 (2009).
    [CrossRef]

2011 (3)

2010 (2)

T. Meier, B. Willke, and K. Danzmann, Opt. Lett. 35, 3742 (2010).
[CrossRef]

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
[CrossRef]

2009 (4)

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, IEEE Sel. Top. Quantum Electron. 15, 1009 (2009).
[CrossRef]

O. B. Jensen, P. E. Andersen, B. Sumpf, K.-H. Hasler, G. Erbert, and P. M. Petersen, Opt. Express 17, 6532 (2009).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, Opt. Commun. 282, 2560 (2009).
[CrossRef]

E. Karamehmedović, C. Pedersen, O. B. Jensen, and P. Tidemand-Lichtenberg, Appl. Phys. B 96, 409 (2009).
[CrossRef]

2008 (1)

2007 (1)

2005 (1)

T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

2002 (1)

1992 (1)

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Adamiec, P.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, IEEE Sel. Top. Quantum Electron. 15, 1009 (2009).
[CrossRef]

Amos, W. B.

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

Andersen, P. E.

Andrusyak, O.

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, Opt. Commun. 282, 2560 (2009).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Bugge, F.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, IEEE Sel. Top. Quantum Electron. 15, 1009 (2009).
[CrossRef]

Chang, Y.-C.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
[CrossRef]

Cheng, J.-X.

Craig, R.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
[CrossRef]

Curley, P. F.

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

Danzmann, K.

DenBaars, S. P.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
[CrossRef]

Dittmar, F.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, IEEE Sel. Top. Quantum Electron. 15, 1009 (2009).
[CrossRef]

Erbert, G.

Fan, T. Y.

T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

Ferguson, A. I.

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

Fricke, J.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, IEEE Sel. Top. Quantum Electron. 15, 1009 (2009).
[CrossRef]

Glebov, L.

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, Opt. Commun. 282, 2560 (2009).
[CrossRef]

Gün, T.

Hasler, K.-H.

Huber, G.

Iveland, J.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
[CrossRef]

Jensen, O. B.

Jones, D. J.

Karamehmedovic, E.

E. Karamehmedović, C. Pedersen, O. B. Jensen, and P. Tidemand-Lichtenberg, Appl. Phys. B 96, 409 (2009).
[CrossRef]

Katagai, T.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Krames, M. R.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
[CrossRef]

Kurimura, S.

Le, T.

Li, B.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
[CrossRef]

McDonagh, L.

Meier, T.

Metz, P.

Mio, N.

Mondry, M. J.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
[CrossRef]

Moriwaki, S.

Müller, A.

Nakamura, S.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
[CrossRef]

Ohmae, N.

Pedersen, C.

E. Karamehmedović, C. Pedersen, O. B. Jensen, and P. Tidemand-Lichtenberg, Appl. Phys. B 96, 409 (2009).
[CrossRef]

Petersen, P. M.

Poblenz, C.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
[CrossRef]

Potma, E. O.

Raring, J. W.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
[CrossRef]

Rudy, P.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
[CrossRef]

Schmidt, M. C.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
[CrossRef]

Smirnov, V.

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, Opt. Commun. 282, 2560 (2009).
[CrossRef]

Speck, J. S.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
[CrossRef]

Stingl, A.

Sumpf, B.

Suzuki, I.

Takeno, K.

Tidemand-Lichtenberg, P.

E. Karamehmedović, C. Pedersen, O. B. Jensen, and P. Tidemand-Lichtenberg, Appl. Phys. B 96, 409 (2009).
[CrossRef]

Tovstonog, S. V.

Tränkle, G.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, IEEE Sel. Top. Quantum Electron. 15, 1009 (2009).
[CrossRef]

Unterhuber, A.

Venus, G.

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, Opt. Commun. 282, 2560 (2009).
[CrossRef]

Vijayakumar, D.

Wallenstein, R.

Walters, B.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
[CrossRef]

Wenzel, H.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, IEEE Sel. Top. Quantum Electron. 15, 1009 (2009).
[CrossRef]

White, J. G.

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

Willke, B.

Xie, X. S.

Ye, J.

Zorn, M.

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, IEEE Sel. Top. Quantum Electron. 15, 1009 (2009).
[CrossRef]

Appl. Phys. B (1)

E. Karamehmedović, C. Pedersen, O. B. Jensen, and P. Tidemand-Lichtenberg, Appl. Phys. B 96, 409 (2009).
[CrossRef]

Appl. Phys. Express (1)

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Express 3, 112101 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

IEEE Sel. Top. Quantum Electron. (1)

B. Sumpf, K.-H. Hasler, P. Adamiec, F. Bugge, F. Dittmar, J. Fricke, H. Wenzel, M. Zorn, G. Erbert, and G. Tränkle, IEEE Sel. Top. Quantum Electron. 15, 1009 (2009).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Opt. Commun. (1)

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, Opt. Commun. 282, 2560 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

P. F. Curley, A. I. Ferguson, J. G. White, and W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Setup for spectral beam combining of DBR-tapered diode lasers with subsequent sum-frequency generation.

Fig. 2.
Fig. 2.

Green power versus normalized pump power at 16 A in the case of SFG (squares) and SHG (Laser 1, triangles; Laser 2, circles). The stars represent the sum of the individual SHG results. For each curve the pump power is normalized with respect to the corresponding maximum pump power. The numerical fits are based on the depleted pump approximation. The inset shows a measured spectrum of the green light generated by SFG at maximum current.

Fig. 3.
Fig. 3.

Achieved improvement in green power compared to second harmonic generation of single emitters. The solid line shows an approximation of the improvement factor based on a nonlinear conversion efficiency of 3%/W.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PSFG=PIR2tanh24ηSHGPIR2.

Metrics