Abstract

Optoacoustic imaging has been primarily implemented in the time domain, i.e., using ultrashort nanosecond laser pulses for illumination. Alternatively, frequency domain optoacoustic imaging can be performed when employing amplitude modulated light sources. We present herein a tomographic implementation of optoacoustic imaging using a linear frequency modulated laser source. The method developed demonstrated the ability to produce tomographic images of optical absorbing phantoms and in vivo images, by enabling visualization of the mouse tail following ICG injection.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Buehler, E. Herzog, D. Razansky, and V. Ntziachristos, Opt. Lett. 35, 2475 (2010).
    [CrossRef]
  2. S. A. Telenkov and A. Mandelis, J. Biomed. Opt. 11, 044006 (2006).
    [CrossRef]
  3. S. A. Telenkov, A. Mandelis, B. Lashkari, and M. Forcht, J. Appl. Phys. 105, 102029 (2009).
    [CrossRef]
  4. B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, Curr. Opin. Biotechnol. 20, 111 (2009).
    [CrossRef]
  5. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).
  6. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, Proc. Natl. Acad. Sci. USA 91, 4887 (1994).
    [CrossRef]
  7. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, Opt. Lett. 20, 426 (1995).
    [CrossRef]
  8. R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, Opt. Express 17, 21414 (2009).
    [CrossRef]
  9. A. Rosenthal, D. Razansky, and V. Ntziachristos, IEEE Trans. Med. Imaging 29, 1275 (2010).
    [CrossRef]
  10. M. I. Skolnik, Radar Handbook, 3rd ed. (McGraw Hill, 2008).
  11. M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J. Appl. Physiol. 40, 575 (1976).
  12. D. Razansky, C. Vinegoni, and V. Ntziachristos, Opt. Lett. 32, 2891 (2007).
    [CrossRef]

2010

A. Buehler, E. Herzog, D. Razansky, and V. Ntziachristos, Opt. Lett. 35, 2475 (2010).
[CrossRef]

A. Rosenthal, D. Razansky, and V. Ntziachristos, IEEE Trans. Med. Imaging 29, 1275 (2010).
[CrossRef]

2009

R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, Opt. Express 17, 21414 (2009).
[CrossRef]

S. A. Telenkov, A. Mandelis, B. Lashkari, and M. Forcht, J. Appl. Phys. 105, 102029 (2009).
[CrossRef]

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, Curr. Opin. Biotechnol. 20, 111 (2009).
[CrossRef]

2007

2006

S. A. Telenkov and A. Mandelis, J. Biomed. Opt. 11, 044006 (2006).
[CrossRef]

1995

1994

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, Proc. Natl. Acad. Sci. USA 91, 4887 (1994).
[CrossRef]

1976

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J. Appl. Physiol. 40, 575 (1976).

Boas, D. A.

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, Opt. Lett. 20, 426 (1995).
[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, Proc. Natl. Acad. Sci. USA 91, 4887 (1994).
[CrossRef]

Bouma, B. E.

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, Curr. Opin. Biotechnol. 20, 111 (2009).
[CrossRef]

Buehler, A.

Chance, B.

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, Opt. Lett. 20, 426 (1995).
[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, Proc. Natl. Acad. Sci. USA 91, 4887 (1994).
[CrossRef]

Forcht, M.

S. A. Telenkov, A. Mandelis, B. Lashkari, and M. Forcht, J. Appl. Phys. 105, 102029 (2009).
[CrossRef]

Herzog, E.

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

Kwant, G.

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J. Appl. Physiol. 40, 575 (1976).

Landsman, M. L. J.

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J. Appl. Physiol. 40, 575 (1976).

Lashkari, B.

S. A. Telenkov, A. Mandelis, B. Lashkari, and M. Forcht, J. Appl. Phys. 105, 102029 (2009).
[CrossRef]

Ma, R.

Mandelis, A.

S. A. Telenkov, A. Mandelis, B. Lashkari, and M. Forcht, J. Appl. Phys. 105, 102029 (2009).
[CrossRef]

S. A. Telenkov and A. Mandelis, J. Biomed. Opt. 11, 044006 (2006).
[CrossRef]

Mook, G. A.

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J. Appl. Physiol. 40, 575 (1976).

Ntziachristos, V.

O’Leary, M. A.

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, Opt. Lett. 20, 426 (1995).
[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, Proc. Natl. Acad. Sci. USA 91, 4887 (1994).
[CrossRef]

Razansky, D.

Rosenthal, A.

A. Rosenthal, D. Razansky, and V. Ntziachristos, IEEE Trans. Med. Imaging 29, 1275 (2010).
[CrossRef]

Skolnik, M. I.

M. I. Skolnik, Radar Handbook, 3rd ed. (McGraw Hill, 2008).

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

Suter, M. J.

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, Curr. Opin. Biotechnol. 20, 111 (2009).
[CrossRef]

Taruttis, A.

Tearney, G. J.

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, Curr. Opin. Biotechnol. 20, 111 (2009).
[CrossRef]

Telenkov, S. A.

S. A. Telenkov, A. Mandelis, B. Lashkari, and M. Forcht, J. Appl. Phys. 105, 102029 (2009).
[CrossRef]

S. A. Telenkov and A. Mandelis, J. Biomed. Opt. 11, 044006 (2006).
[CrossRef]

Vakoc, B. J.

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, Curr. Opin. Biotechnol. 20, 111 (2009).
[CrossRef]

Vinegoni, C.

Yodh, A. G.

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, Opt. Lett. 20, 426 (1995).
[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, Proc. Natl. Acad. Sci. USA 91, 4887 (1994).
[CrossRef]

Yun, S. H.

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, Curr. Opin. Biotechnol. 20, 111 (2009).
[CrossRef]

Zijlstra, W. G.

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J. Appl. Physiol. 40, 575 (1976).

Curr. Opin. Biotechnol.

B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, Curr. Opin. Biotechnol. 20, 111 (2009).
[CrossRef]

IEEE Trans. Med. Imaging

A. Rosenthal, D. Razansky, and V. Ntziachristos, IEEE Trans. Med. Imaging 29, 1275 (2010).
[CrossRef]

J. Appl. Phys.

S. A. Telenkov, A. Mandelis, B. Lashkari, and M. Forcht, J. Appl. Phys. 105, 102029 (2009).
[CrossRef]

J. Appl. Physiol.

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J. Appl. Physiol. 40, 575 (1976).

J. Biomed. Opt.

S. A. Telenkov and A. Mandelis, J. Biomed. Opt. 11, 044006 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. USA

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, Proc. Natl. Acad. Sci. USA 91, 4887 (1994).
[CrossRef]

Other

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

M. I. Skolnik, Radar Handbook, 3rd ed. (McGraw Hill, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the frequency domain optoacoustic tomography system. An optical fiber (OF) guides the laser chirps onto the object (OB). Signals from the photodetector (PD) and the transducer (T) are acquired simultaneously by the data acquisition (DAQ) and afterwards cross correlated.

Fig. 2.
Fig. 2.

(a) Experimental configuration with two graphite rods [A] and [B], optical laser beam [C], photodetector beam [D], 3.5 MHz ultrasonic transducer [E], [C][E]40°; (b) tomographic reconstruction of two graphite rods from (a); (c) example of a cross correlated signal from two graphite absorbers for one specific projection.

Fig. 3.
Fig. 3.

(a) Photograph of the rectangular shaped agar phantom with a 2cm1 agar inclusion, (b) reconstruction of the phantom with the rectangular shaped 2cm1 insertion, (c) photograph taken of the agar phantom with a 1.5 mm 2cm1 insertion, (d) reconstruction of the phantom with the hexagonal insertion.

Fig. 4.
Fig. 4.

(a) FD-optoacoustic tomography (FD-OAT) in vivo mouse tail image without ICG, (b) FD-OAT tail image during ICG injection, (c) tail image 10min after initial ICG injection, (d) cryoslice of the mouse (LV, lateral caudal veins; DV, dorsal caudal vein; VA, ventral caudal artery; dashed circle represents approximate tail surface).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x(t)=Acos[2πf0t+πkt2],
cc(r⃗,t)=l*(r⃗,τ)·p(r⃗,t+τ)dτ,
SNR=20log10[μ(signalROI)σ(noiseROI)],

Metrics