Abstract

We propose and experimentally demonstrate a reflectance-based photonic crystal (PC) liquid sensor. The PC is made of two-dimensional TiO2 nanopillar arrays. Such a reflectance-based structure with large functional area not only simplifies the optical guiding but also enhances the sensor signal. A linear shift of reflectance peaks is found for liquids with refractive indices varying from 1.333 to 1.390 at wavelength near 1.5 μm. Excellent agreement between measured values and the generated reflectance model at a fixed wavelength is obtained, indicating the high potential of these PC-based liquid sensors for biological and environmental applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Vahala, Optical Microcavities (World Scientific Publishing, Singapore, 2004).
  2. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, Opt. Express 15, 3169 (2007).
    [CrossRef]
  3. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, Opt. Lett. 29, 1093 (2004).
    [CrossRef]
  4. D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, Appl. Phys. Lett. 93, 181103 (2008).
    [CrossRef]
  5. C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, Opt. Express 18, 27930 (2010).
    [CrossRef]
  6. S. Johnson and J. Joannopoulos, Opt. Express 8, 173 (2001).
    [CrossRef]
  7. Y. Huang, G. Pandraud, and P. M. Sarro, in Solid-State Sensors, Actuators, and Microsystems Conference (2011), pp. 2682–2685.
  8. Y. Huang, G. Pandraud, and P. M. Sarro, Procedia Engineering 5, 1148 (2010).
    [CrossRef]
  9. R. C. Weast, ed., Handbook of Chemistry and Physics, 67th ed. (CRC Press, 1986).

2010 (2)

C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, Opt. Express 18, 27930 (2010).
[CrossRef]

Y. Huang, G. Pandraud, and P. M. Sarro, Procedia Engineering 5, 1148 (2010).
[CrossRef]

2008 (1)

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, Appl. Phys. Lett. 93, 181103 (2008).
[CrossRef]

2007 (1)

2004 (1)

2001 (1)

Abstreiter, G.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, Appl. Phys. Lett. 93, 181103 (2008).
[CrossRef]

Assefa, S.

Borel, P. I.

Chow, E.

Dorfner, D. F.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, Appl. Phys. Lett. 93, 181103 (2008).
[CrossRef]

Finley, J. J.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, Appl. Phys. Lett. 93, 181103 (2008).
[CrossRef]

Frandsen, L. H.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, Appl. Phys. Lett. 93, 181103 (2008).
[CrossRef]

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, Opt. Express 15, 3169 (2007).
[CrossRef]

Girolami, G.

Grot, A.

Huang, Y.

Y. Huang, G. Pandraud, and P. M. Sarro, Procedia Engineering 5, 1148 (2010).
[CrossRef]

Y. Huang, G. Pandraud, and P. M. Sarro, in Solid-State Sensors, Actuators, and Microsystems Conference (2011), pp. 2682–2685.

Hurlimann, T.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, Appl. Phys. Lett. 93, 181103 (2008).
[CrossRef]

Joannopoulos, J.

Johnson, S.

Kang, C.

Kjems, J.

Kristensen, M.

Mirkarimi, L. W.

Pandraud, G.

Y. Huang, G. Pandraud, and P. M. Sarro, Procedia Engineering 5, 1148 (2010).
[CrossRef]

Y. Huang, G. Pandraud, and P. M. Sarro, in Solid-State Sensors, Actuators, and Microsystems Conference (2011), pp. 2682–2685.

Phare, C. T.

Sarro, P. M.

Y. Huang, G. Pandraud, and P. M. Sarro, Procedia Engineering 5, 1148 (2010).
[CrossRef]

Y. Huang, G. Pandraud, and P. M. Sarro, in Solid-State Sensors, Actuators, and Microsystems Conference (2011), pp. 2682–2685.

Sigalas, M.

Skivesen, N.

Têtu, A.

Vahala, K.

K. Vahala, Optical Microcavities (World Scientific Publishing, Singapore, 2004).

Vlasov, Y. A.

Weiss, S. M.

Zabel, T.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, Appl. Phys. Lett. 93, 181103 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, Appl. Phys. Lett. 93, 181103 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Procedia Engineering (1)

Y. Huang, G. Pandraud, and P. M. Sarro, Procedia Engineering 5, 1148 (2010).
[CrossRef]

Other (3)

R. C. Weast, ed., Handbook of Chemistry and Physics, 67th ed. (CRC Press, 1986).

Y. Huang, G. Pandraud, and P. M. Sarro, in Solid-State Sensors, Actuators, and Microsystems Conference (2011), pp. 2682–2685.

K. Vahala, Optical Microcavities (World Scientific Publishing, Singapore, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Simulated photonic band structures of TiO2 nanopillar arrays surrounded in an environmental medium with refractive index of 1.35 and (b) linear changes of the mid-band-gaps versus environmental refractive index.

Fig. 2.
Fig. 2.

(a) Schematic drawing of the reflectance-based PC liquid sensor; (b) SEM image of the uniform and smooth TiO2 nanopillars array. Pillar height is 950 nm, pillar radius is 225 nm, and chamber volume is 4nL.

Fig. 3.
Fig. 3.

Wide range reflection spectra of the PC liquid sensor for the 25% and 35% sugar solutions.

Fig. 4.
Fig. 4.

Normalized reflectance curves of different concentration sugar solutions tested with the PC liquid sensor. Inset: one example showing the Gaussian fit of the reflectance peak for determining the exact peak position.

Fig. 5.
Fig. 5.

Measured peak positions of 5%–35% sugar solutions together with water and isopropanol versus their refractive indices. The linear fitting slope indicates a sensitivity of 441.6nm/RIU.

Fig. 6.
Fig. 6.

Model curve derived from Gaussian profile for the 35% sugar solution is plotted together with the measured reflectance data at wavelength of 1495 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

y=aexp[(xλ)2/(2w2)]+b(xλ)+y0,
λ=S×n+λ0,
f(n)=aexp{[x0(S×n+λ0)]2/(2w2)}+b[x0(S×n+λ0)]+y0,

Metrics