Abstract

A reappraisal of the 1929 analysis of luminescence by Soleillet reveals the form of the Mueller matrix for fluorescence scattering whose parameters are directly defined in terms of the now-familiar fluorescence anisotropy parameter. If the scattering analyte is optically active, it is further shown how fluorescence detected circular dichroism and circularly polarized luminescence can be recovered, simultaneously and free of artifacts.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Paul Soleillet (1902–1992) was born in Marseille. His work on fluorescence discussed herein was his Ph.D. thesis, which he defended at the École Normale Supérieure in 1929. Subsequently, he held positions at the universities of Strasbourg, Potiers, and la Sorbonne. He published few works during his scientific career, although, besides fluorescence, he made significant contributions to optical resonances, spectrophotometry, and the scientific study of works of art.
  2. P. Soleillet, Ann. Phys. 12, 23 (1929).
  3. E. Collett, in Polarized Light, D. Goldstein, ed. (Marcel Dekker, 2003), pp. xvi, 66, 420.
  4. K. Järrendahl, and B. Kahr, Woollam newsletter, February2011, pp. 8–9, http://www.jawoollam.com/Newletters/General/hans\_mueller.pdf .
  5. H. Mueller, Report no. 2 of OSR project OEMsr-576 (1943).
  6. G. G. Stokes, Trans. Cambridge Philos. Soc. 9, 399(1852).
  7. E. Collett, Phys. Today 64(6), 9 (2011).
    [CrossRef]
  8. S. Chandrasekhar, Astrophys. J. 105, 441 (1947).
    [CrossRef]
  9. F. Perrin, J. Chem. Phys. 10, 415 (1942).
    [CrossRef]
  10. F. Perrin, J. Phys. Rad. 3, 41 (1942).
    [CrossRef]
  11. R. C. Jones, J. Opt. Soc. Am. 37, 107 (1947).
    [CrossRef]
  12. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), 3rd ed.
  13. F. Perrin, J. Phys. 12, 390 (1926).
    [CrossRef]
  14. Y. Shindo and Y. Oda, Appl. Spectrosc. 46, 1251 (1992).
    [CrossRef]
  15. F. Stabo-Eeg, “Development of instrumentation for Mueller matrix ellipsometry,” Ph.D. dissertation (Norwegian University of Science and Technology, 2009).
  16. O. Arteaga, “Mueller matrix polarimetry of anisotropic chiral media,” Ph.D. dissertation (University of Barcelona, 2010).
  17. O. Arteaga, E. Garcia-Caurel, and R. Ossikovski, J. Opt. Soc. Am. A 28, 548 (2011).
    [CrossRef]
  18. B. Ehrenberg and I. Z. Steinberg, J. Am. Chem. Soc. 98, 1293 (1976).
    [CrossRef]
  19. T. Nehira, K. Tanaka, T. Takakuwa, C. Ohshima, H. Masago, G. Pescitelli, A. Wada, and N. Berova, Appl. Spectrosc. 59, 121 (2005).
    [CrossRef]

2011 (2)

2005 (1)

1992 (1)

1976 (1)

B. Ehrenberg and I. Z. Steinberg, J. Am. Chem. Soc. 98, 1293 (1976).
[CrossRef]

1947 (2)

R. C. Jones, J. Opt. Soc. Am. 37, 107 (1947).
[CrossRef]

S. Chandrasekhar, Astrophys. J. 105, 441 (1947).
[CrossRef]

1942 (2)

F. Perrin, J. Chem. Phys. 10, 415 (1942).
[CrossRef]

F. Perrin, J. Phys. Rad. 3, 41 (1942).
[CrossRef]

1929 (1)

P. Soleillet, Ann. Phys. 12, 23 (1929).

1926 (1)

F. Perrin, J. Phys. 12, 390 (1926).
[CrossRef]

1852 (1)

G. G. Stokes, Trans. Cambridge Philos. Soc. 9, 399(1852).

Arteaga, O.

O. Arteaga, E. Garcia-Caurel, and R. Ossikovski, J. Opt. Soc. Am. A 28, 548 (2011).
[CrossRef]

O. Arteaga, “Mueller matrix polarimetry of anisotropic chiral media,” Ph.D. dissertation (University of Barcelona, 2010).

Berova, N.

Chandrasekhar, S.

S. Chandrasekhar, Astrophys. J. 105, 441 (1947).
[CrossRef]

Collett, E.

E. Collett, Phys. Today 64(6), 9 (2011).
[CrossRef]

E. Collett, in Polarized Light, D. Goldstein, ed. (Marcel Dekker, 2003), pp. xvi, 66, 420.

Ehrenberg, B.

B. Ehrenberg and I. Z. Steinberg, J. Am. Chem. Soc. 98, 1293 (1976).
[CrossRef]

Garcia-Caurel, E.

Jones, R. C.

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), 3rd ed.

Masago, H.

Mueller, H.

H. Mueller, Report no. 2 of OSR project OEMsr-576 (1943).

Nehira, T.

Oda, Y.

Ohshima, C.

Ossikovski, R.

Perrin, F.

F. Perrin, J. Chem. Phys. 10, 415 (1942).
[CrossRef]

F. Perrin, J. Phys. Rad. 3, 41 (1942).
[CrossRef]

F. Perrin, J. Phys. 12, 390 (1926).
[CrossRef]

Pescitelli, G.

Shindo, Y.

Soleillet, P.

P. Soleillet, Ann. Phys. 12, 23 (1929).

Stabo-Eeg, F.

F. Stabo-Eeg, “Development of instrumentation for Mueller matrix ellipsometry,” Ph.D. dissertation (Norwegian University of Science and Technology, 2009).

Steinberg, I. Z.

B. Ehrenberg and I. Z. Steinberg, J. Am. Chem. Soc. 98, 1293 (1976).
[CrossRef]

Stokes, G. G.

G. G. Stokes, Trans. Cambridge Philos. Soc. 9, 399(1852).

Takakuwa, T.

Tanaka, K.

Wada, A.

Ann. Phys. (1)

P. Soleillet, Ann. Phys. 12, 23 (1929).

Appl. Spectrosc. (2)

Astrophys. J. (1)

S. Chandrasekhar, Astrophys. J. 105, 441 (1947).
[CrossRef]

J. Am. Chem. Soc. (1)

B. Ehrenberg and I. Z. Steinberg, J. Am. Chem. Soc. 98, 1293 (1976).
[CrossRef]

J. Chem. Phys. (1)

F. Perrin, J. Chem. Phys. 10, 415 (1942).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. (1)

F. Perrin, J. Phys. 12, 390 (1926).
[CrossRef]

J. Phys. Rad. (1)

F. Perrin, J. Phys. Rad. 3, 41 (1942).
[CrossRef]

Phys. Today (1)

E. Collett, Phys. Today 64(6), 9 (2011).
[CrossRef]

Trans. Cambridge Philos. Soc. (1)

G. G. Stokes, Trans. Cambridge Philos. Soc. 9, 399(1852).

Other (7)

Paul Soleillet (1902–1992) was born in Marseille. His work on fluorescence discussed herein was his Ph.D. thesis, which he defended at the École Normale Supérieure in 1929. Subsequently, he held positions at the universities of Strasbourg, Potiers, and la Sorbonne. He published few works during his scientific career, although, besides fluorescence, he made significant contributions to optical resonances, spectrophotometry, and the scientific study of works of art.

F. Stabo-Eeg, “Development of instrumentation for Mueller matrix ellipsometry,” Ph.D. dissertation (Norwegian University of Science and Technology, 2009).

O. Arteaga, “Mueller matrix polarimetry of anisotropic chiral media,” Ph.D. dissertation (University of Barcelona, 2010).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), 3rd ed.

E. Collett, in Polarized Light, D. Goldstein, ed. (Marcel Dekker, 2003), pp. xvi, 66, 420.

K. Järrendahl, and B. Kahr, Woollam newsletter, February2011, pp. 8–9, http://www.jawoollam.com/Newletters/General/hans\_mueller.pdf .

H. Mueller, Report no. 2 of OSR project OEMsr-576 (1943).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

The scattering plane is the X1X2 plane. The states of polarization of the incident and scattered light can be described in terms of the p and s components, which are, respectively, parallel and perpendicular to the scattering plane.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I=(absin2(ϕ))Ibsin2(ϕ)M,
M=bsin2(ϕ)I+b(1+cos2(ϕ))M,
C=2bcos(ϕ)C,
S=2ccos(ϕ)S,
F=[absin2(ϕ)bsin2(ϕ)00bsin2(ϕ)b(1+cos2(ϕ))00002bcos(ϕ)00002ccos(ϕ)].
a=12(1+cos2θ),
b=14(3cos2θ1),
F=M1FM0,
Mi=[100αi0γiβi00βiγi0αi001].
F=[F00F01γ0F01β0F00α0+F33α1F01γ1F11γ0γ1F11β0γ1+F22β1γ0F01α0γ1F01β1F11β1γ0F22β0γ1F22γ0γ1F01α0β1F00α1+F33α0F01α1γ0F01α1β0F33],
F03=α0[absin2(ϕ)]+2cα1cos(ϕ),
F30=α1[absin2(ϕ)]+2cα0cos(ϕ).
F03/F00α0,
F30/F00α1.

Metrics