Abstract

Homodyne detection can dramatically enhance measurement sensitivity for weak signals. In nonlinear optical microscopy it can make accessible a range of novel, intrinsic, contrast like nonlinear absorption and nonlinear phase contrast. Here a compact and rapid pulse shaper is developed, implemented, and demonstrated for homodyne detection in nonlinear microscopy with high-repetition rate mode-locked femtosecond lasers. With this method we generate two-photon absorption (TPA) and self-phase modulation images of gold nanostars in biological samples. Simultaneous imaging of two-photon luminescence and TPA also enables us to produce two-photon quantum yield images.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef]
  2. R. M. Brown, A. C. Millard, and P. J. Campagnola, Opt. Lett. 28, 2207 (2003).
    [CrossRef]
  3. C. L. Evans and X. S. Xie, Annu. Rev. Anal. Chem. 1, 883 (2008).
    [CrossRef]
  4. T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71ra15 (2011).
    [CrossRef]
  5. M. C. Fischer, H. C. Liu, I. R. Piletic, and W. S. Warren, Opt. Express 16, 4192 (2008).
    [CrossRef]
  6. I. R. Piletic, M. C. Fischer, P. Samineni, G. Yurtsever, and W. S. Warren, Opt. Lett. 33, 1482 (2008).
    [CrossRef]
  7. H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, Nanotech. 23, 075102 (2012).
    [CrossRef]
  8. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, Proc. Natl. Acad. Sci., India, Sect. A 102, 15752 (2005).
    [CrossRef]
  9. Y. Wang, C. Y. Lin, A. Nikolaenko, V. Raghunathan, and E. O. Potma, Adv. Opt. Photon. 3, 1 (2011).
    [CrossRef]
  10. J. Ando, K. Fujita, N. Smith, and S. Kawata, Nano Lett. 11, 5344 (2011).
    [CrossRef]

2012

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, Nanotech. 23, 075102 (2012).
[CrossRef]

2011

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71ra15 (2011).
[CrossRef]

J. Ando, K. Fujita, N. Smith, and S. Kawata, Nano Lett. 11, 5344 (2011).
[CrossRef]

Y. Wang, C. Y. Lin, A. Nikolaenko, V. Raghunathan, and E. O. Potma, Adv. Opt. Photon. 3, 1 (2011).
[CrossRef]

2008

2005

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, Proc. Natl. Acad. Sci., India, Sect. A 102, 15752 (2005).
[CrossRef]

2003

1990

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef]

Ando, J.

J. Ando, K. Fujita, N. Smith, and S. Kawata, Nano Lett. 11, 5344 (2011).
[CrossRef]

Brown, R. M.

Campagnola, P. J.

Cheng, J. X.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, Proc. Natl. Acad. Sci., India, Sect. A 102, 15752 (2005).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef]

Evans, C. L.

C. L. Evans and X. S. Xie, Annu. Rev. Anal. Chem. 1, 883 (2008).
[CrossRef]

Fischer, M. C.

Fujita, K.

J. Ando, K. Fujita, N. Smith, and S. Kawata, Nano Lett. 11, 5344 (2011).
[CrossRef]

Grant, G. A.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, Nanotech. 23, 075102 (2012).
[CrossRef]

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, Proc. Natl. Acad. Sci., India, Sect. A 102, 15752 (2005).
[CrossRef]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, Proc. Natl. Acad. Sci., India, Sect. A 102, 15752 (2005).
[CrossRef]

Hwang, H.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, Nanotech. 23, 075102 (2012).
[CrossRef]

Kawata, S.

J. Ando, K. Fujita, N. Smith, and S. Kawata, Nano Lett. 11, 5344 (2011).
[CrossRef]

Khoury, C. G.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, Nanotech. 23, 075102 (2012).
[CrossRef]

Lin, C. Y.

Liu, H. C.

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, Proc. Natl. Acad. Sci., India, Sect. A 102, 15752 (2005).
[CrossRef]

Matthews, T. E.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71ra15 (2011).
[CrossRef]

Millard, A. C.

Nikolaenko, A.

Piletic, I. R.

Potma, E. O.

Raghunathan, V.

Samineni, P.

Selim, M. A.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71ra15 (2011).
[CrossRef]

Simpson, M. J.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71ra15 (2011).
[CrossRef]

Smith, N.

J. Ando, K. Fujita, N. Smith, and S. Kawata, Nano Lett. 11, 5344 (2011).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef]

Vo-Dinh, T.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, Nanotech. 23, 075102 (2012).
[CrossRef]

Wang, H.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, Proc. Natl. Acad. Sci., India, Sect. A 102, 15752 (2005).
[CrossRef]

Wang, Y.

Warren, W. S.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef]

Wei, A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, Proc. Natl. Acad. Sci., India, Sect. A 102, 15752 (2005).
[CrossRef]

Wilson, C. M.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, Nanotech. 23, 075102 (2012).
[CrossRef]

Xie, X. S.

C. L. Evans and X. S. Xie, Annu. Rev. Anal. Chem. 1, 883 (2008).
[CrossRef]

Yuan, H.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, Nanotech. 23, 075102 (2012).
[CrossRef]

Yurtsever, G.

Zweifel, D. A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, Proc. Natl. Acad. Sci., India, Sect. A 102, 15752 (2005).
[CrossRef]

Adv. Opt. Photon.

Annu. Rev. Anal. Chem.

C. L. Evans and X. S. Xie, Annu. Rev. Anal. Chem. 1, 883 (2008).
[CrossRef]

Nano Lett.

J. Ando, K. Fujita, N. Smith, and S. Kawata, Nano Lett. 11, 5344 (2011).
[CrossRef]

Nanotech.

H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, Nanotech. 23, 075102 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci., India, Sect. A

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, Proc. Natl. Acad. Sci., India, Sect. A 102, 15752 (2005).
[CrossRef]

Sci. Transl. Med.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, Sci. Transl. Med. 3, 71ra15 (2011).
[CrossRef]

Science

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Spectral hole geometry, with a narrow, rotating LO in the center; (b) the split-spectrum geometry, where half of the spectrum cycles its phase.

Fig. 2.
Fig. 2.

SPM and TPA signal as a function of LO position and LO width (measured in units of the bandwidth of the unshaped pulse). Dashed ovals correspond to the shape in Fig. 1(a) and dashed rectangles to Fig. 1(b). For these calculations we chose TPA and SPM coefficients of equal magnitudes (scaled η2=α2 in [5]).

Fig. 3.
Fig. 3.

Experimental setup. LPF, long-pass filter; SPF, short pass filter; PD, photo detector. The edge of the SPF is shifted to reject the phase-cycling portion of the spectrum.

Fig. 4.
Fig. 4.

TPA and SPM measurements in a quartz cuvette filled with a 30 mM solution of Rhodamine 6G in methanol using a mode-locked laser with 2.5 mW input power, and 1 ms lock-in time constant.

Fig. 5.
Fig. 5.

(a) TPL; (b) TPA; and (c) SPM images of BT549 breast cancer cells incubated with gold nanostars. The lock-in phase was adjusted according to the SPM signal generated in the glass coverslip; (d) Map of TPL to TPA ratio. Images (a)–(d) were acquired simultaneously (dimensions 100×100μm, 0.5 mW input power, 8-frame average, and acquisition time 3.2 s per frame); (e) FLIM image of the same cell taken with an Olympus FV1000 multiphoton microscope and PicoHarp 300 counting electronics (80 MHz, 810 nm, 0.8 mW input power and 120 s acquisition time).

Metrics