Abstract

Optical dye-dilution techniques can quantify kinetic parameters in a region of tissue, but currently rely on a two-step process—spatial reconstruction of the dye concentration, repeated at every time-point, and subsequent kinetic analysis of the time-dependent change in dye concentration. Inaccuracies, in this approach, are due mainly to the ill-posed nature of the spatial reconstruction problem, which propagates into kinetic analysis and result in errors in extracted dynamic parameters. We present a hybrid kinetic deconvolution optical reconstruction algorithm, effectively combining optical reconstruction and model-independent kinetic analysis into a single inverse problem that is better posed. Kinetic parameters of multiple tissue regions can be quantified simultaneously. As proof of principle, we provide numerical experiments in reflectance-based and fluorescence molecular tomography scenarios.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs

Jonathan T. Elliott, Daniel Milej, Anna Gerega, Wojciech Weigl, Mamadou Diop, Laura B. Morrison, Ting-Yim Lee, Adam Liebert, and Keith St. Lawrence
Biomed. Opt. Express 4(2) 206-218 (2013)

Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements

Mamadou Diop, Kyle Verdecchia, Ting-Yim Lee, and Keith St Lawrence
Biomed. Opt. Express 2(7) 2068-2081 (2011)

Theoretical investigation of measuring cerebral blood flow in the adult human head using bolus Indocyanine Green injection and near-infrared spectroscopy

Terence S. Leung, Ilias Tachtsidis, Martin Tisdall, Martin Smith, David T. Delpy, and Clare E. Elwell
Appl. Opt. 46(10) 1604-1614 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription