Abstract

A big problem in low-coherence interference microscopy is the degradation of the coherence signal caused by shift of the angular and temporal spectrum gates. It limits the depth of field in confocal optical coherence microscopy and degrades images of sample inner structure in most interference microscopy techniques. To overcome this problem we propose numerical correction of the coherence gate in application to full-field swept-source interference microscopy. The proposed technique allows three-dimensional sample imaging without mechanical movement of the microscope components and is also capable of determining separately the geometrical thickness and the refractive index of the sample layers, when the sample contains a transversal pattern. The applicability of the proposed technique is verified with numerical simulation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, Appl. Opt. 41, 805 (2002).
    [CrossRef]
  2. A. D. Aguirre and J. G. Fujimoto, in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto eds. (Springer, 2008), pp. 505–542.
  3. I. Abdulhalim, J. Opt. A 8, 952 (2006).
    [CrossRef]
  4. V. P. Ryabukho, D. V. Lyakin, and V. V. Lychagov, Opt. Spectrosc. 107, 282 (2009).
    [CrossRef]
  5. P. de Groot and X. C. de Lega, Appl. Opt. 43, 4821 (2004).
    [CrossRef]
  6. V. Ryabukho and D. Lyakin, Opt. Lett. 30, 224 (2005).
    [CrossRef]
  7. S. Labiau, G. David, S. Gigan, and A. C. Boccara, Opt. Lett. 34, 1576 (2009).
    [CrossRef]
  8. D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, J. Opt. Soc. Am. A 24, 1034 (2007).
    [CrossRef]
  9. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, Opt. Lett. 20, 2258 (1995).
    [CrossRef]
  10. U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).
  11. A. A. Grebenyuk and V. P. Ryabukho, Proc. SPIE 8427, 84271M (2012).
    [CrossRef]
  12. P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, J. Biomed Opt. 14, 014018 (2009).
    [CrossRef]

2012 (1)

A. A. Grebenyuk and V. P. Ryabukho, Proc. SPIE 8427, 84271M (2012).
[CrossRef]

2009 (3)

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, J. Biomed Opt. 14, 014018 (2009).
[CrossRef]

V. P. Ryabukho, D. V. Lyakin, and V. V. Lychagov, Opt. Spectrosc. 107, 282 (2009).
[CrossRef]

S. Labiau, G. David, S. Gigan, and A. C. Boccara, Opt. Lett. 34, 1576 (2009).
[CrossRef]

2007 (1)

2006 (1)

I. Abdulhalim, J. Opt. A 8, 952 (2006).
[CrossRef]

2005 (1)

2004 (1)

2002 (1)

1995 (1)

Abdulhalim, I.

I. Abdulhalim, J. Opt. A 8, 952 (2006).
[CrossRef]

Aguirre, A. D.

A. D. Aguirre and J. G. Fujimoto, in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto eds. (Springer, 2008), pp. 505–542.

Beaurepaire, E.

Bernhardt, I.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, J. Biomed Opt. 14, 014018 (2009).
[CrossRef]

Boccara, A. C.

Boppart, S. A.

Bouma, B. E.

Brezinski, M. E.

Carney, P. S.

David, G.

de Groot, P.

de Lega, X. C.

Dirksen, D.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, J. Biomed Opt. 14, 014018 (2009).
[CrossRef]

Dubois, A.

Fujimoto, J. G.

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, Opt. Lett. 20, 2258 (1995).
[CrossRef]

A. D. Aguirre and J. G. Fujimoto, in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto eds. (Springer, 2008), pp. 505–542.

Georgiev, G.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, J. Biomed Opt. 14, 014018 (2009).
[CrossRef]

Gigan, S.

Grebenyuk, A. A.

A. A. Grebenyuk and V. P. Ryabukho, Proc. SPIE 8427, 84271M (2012).
[CrossRef]

Hee, M. R.

Ivanova, L.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, J. Biomed Opt. 14, 014018 (2009).
[CrossRef]

Jueptner, W.

U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).

Kemper, B.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, J. Biomed Opt. 14, 014018 (2009).
[CrossRef]

Ketelhut, S.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, J. Biomed Opt. 14, 014018 (2009).
[CrossRef]

Labiau, S.

Langehanenberg, P.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, J. Biomed Opt. 14, 014018 (2009).
[CrossRef]

Lyakin, D.

Lyakin, D. V.

V. P. Ryabukho, D. V. Lyakin, and V. V. Lychagov, Opt. Spectrosc. 107, 282 (2009).
[CrossRef]

Lychagov, V. V.

V. P. Ryabukho, D. V. Lyakin, and V. V. Lychagov, Opt. Spectrosc. 107, 282 (2009).
[CrossRef]

Marks, D. L.

Ralston, T. S.

Ryabukho, V.

Ryabukho, V. P.

A. A. Grebenyuk and V. P. Ryabukho, Proc. SPIE 8427, 84271M (2012).
[CrossRef]

V. P. Ryabukho, D. V. Lyakin, and V. V. Lychagov, Opt. Spectrosc. 107, 282 (2009).
[CrossRef]

Schnars, U.

U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).

Southern, J. F.

Tearney, G. J.

Vabre, L.

Vollmer, A.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, J. Biomed Opt. 14, 014018 (2009).
[CrossRef]

von Bally, G.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, J. Biomed Opt. 14, 014018 (2009).
[CrossRef]

Appl. Opt. (2)

J. Biomed Opt. (1)

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, J. Biomed Opt. 14, 014018 (2009).
[CrossRef]

J. Opt. A (1)

I. Abdulhalim, J. Opt. A 8, 952 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (3)

Opt. Spectrosc. (1)

V. P. Ryabukho, D. V. Lyakin, and V. V. Lychagov, Opt. Spectrosc. 107, 282 (2009).
[CrossRef]

Proc. SPIE (1)

A. A. Grebenyuk and V. P. Ryabukho, Proc. SPIE 8427, 84271M (2012).
[CrossRef]

Other (2)

A. D. Aguirre and J. G. Fujimoto, in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto eds. (Springer, 2008), pp. 505–542.

U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Setup for realization of the proposed technique. FC, fiber coupler; OF, optical fibers; RL, lens, directing the reference field onto CCD; BS, beam splitters; FS, field stop; IL, illumination lens; OL, objective lens; A, objective aperture; TL, tube lens. The IL focuses the light from the fiber in the objective aperture plane, so that the sample is illuminated with a plane wave. For every particular frequency ω of the swept source, this setup acts as a reflection-mode digital holographic microscope.

Fig. 2.
Fig. 2.

Images, reconstructed from simulated interferograms by 3-D Fourier transform of the spatiotemporal spectrum V˜S(ω;kx,ky) and selection of appropriate positions using Eq. (4). (a), (d), First interface; (b), (e) second interface; (c), (f) third interface. For images (d)–(f), the 3-D spectra were multiplied by the appropriate function of Eq. (3) for each interface, before application of 3-D Fourier transform. Field size of the fragment presented in all images is 205μm×102μm.

Fig. 3.
Fig. 3.

Images reconstructed from interferograms, simulated in presence of noise. (a) corresponds to Figs. 2(a) and 2(d); (b) corresponds to Fig. 2(f).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

VS(ω;x,y)=G0(ω)exp[ik(j=0NnjΔzjzR)]×dxSdySrS(ω;xS,yS)A(ω;x3,y3)×exp[ikj=0NΔzj(nj2(x32+y32)/f2)1/2]×exp{ik[x3(x/fl+xS/f)+y3(y/fl+yS/f)]}dx3dy3,
Ψ(ω;kx,ky)=exp[ij=0NΔzj(k2nj2(kx2+ky2)M2)1/2]×exp[ik(zRj=0NnjΔzj)],
Ψ(ω;kx,ky)=Ψ(ω;kx,ky)exp[ik(2j=0NnjΔzjzR)]exp[i(j=0NΔzjnj)M2(kx2+ky22k)],
l=2nim(zS|f|)+2j=1NnjΔzjzR.

Metrics