Abstract

We introduce a newly developed adaptive optics dioptric scanning ophthalmoscope (AO-DSO) in which all powered optical parts were refractive lenses instead of concave or convex mirrors. By designing dioptric optics, we were able to achieve a compact instrument with a 10 deg field of view (FOV10) and 1.5 deg field of view (FOV1.5) high-resolution imaging. Although the resolution of FOV10 was sacrificed because of the variation of aberrations of the eye over the 10 deg field, our system works with AO in the case of FOV1.5 and can be used as a scanning laser ophthalmoscope with good optical slicing in the case of FOV10. To test the ability of the AO-DSO, we performed imaging on a normal subject and on a patient with occult macular dystrophy.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, and D. T. Miller, J. Opt. Soc. Am. A 14, 2884 (1997).
    [CrossRef]
  2. A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, Opt. Express 10, 405 (2002).
  3. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, Optometry Vision Sci. 87, 930 (2010).
    [CrossRef]
  4. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, J. Opt. Soc. Am. A 24, 1313 (2007).
    [CrossRef]
  5. M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, Opt. Express 18, 11607 (2010).
    [CrossRef]
  6. A. Dubra and Y. Sulai, Biomed. Opt. Express 2, 1757 (2011).
    [CrossRef]
  7. M. Mujat, R. D. Ferguson, N. Iftimia, and D. X. Hammer, Opt. Express 17, 10242 (2009).
    [CrossRef]
  8. Y. Zhang, S. Poonja, and A. Roorda, Opt. Lett. 31, 1268 (2006).
    [CrossRef]
  9. Y. Kitaguchi, S. Kusaka, T. Yamaguchi, T. Mihashi, and T. Fujikado, Clin. Ophthalmol. 5, 345 (2011).
    [CrossRef]

2011 (2)

A. Dubra and Y. Sulai, Biomed. Opt. Express 2, 1757 (2011).
[CrossRef]

Y. Kitaguchi, S. Kusaka, T. Yamaguchi, T. Mihashi, and T. Fujikado, Clin. Ophthalmol. 5, 345 (2011).
[CrossRef]

2010 (2)

M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, Opt. Express 18, 11607 (2010).
[CrossRef]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, Optometry Vision Sci. 87, 930 (2010).
[CrossRef]

2009 (1)

2007 (1)

2006 (1)

2002 (1)

1997 (1)

Burns, S. A.

Campbell, M.

Carroll, J.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, Optometry Vision Sci. 87, 930 (2010).
[CrossRef]

Donnelly, W.

Dubis, A. M.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, Optometry Vision Sci. 87, 930 (2010).
[CrossRef]

Dubra, A.

Duncan, J. L.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, Optometry Vision Sci. 87, 930 (2010).
[CrossRef]

Elsner, A. E.

Ferguson, D.

Ferguson, R. D.

Fujikado, T.

Y. Kitaguchi, S. Kusaka, T. Yamaguchi, T. Mihashi, and T. Fujikado, Clin. Ophthalmol. 5, 345 (2011).
[CrossRef]

Godara, P.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, Optometry Vision Sci. 87, 930 (2010).
[CrossRef]

Hammer, D. X.

Hebert, T.

Iftimia, N.

Kitaguchi, Y.

Y. Kitaguchi, S. Kusaka, T. Yamaguchi, T. Mihashi, and T. Fujikado, Clin. Ophthalmol. 5, 345 (2011).
[CrossRef]

Kusaka, S.

Y. Kitaguchi, S. Kusaka, T. Yamaguchi, T. Mihashi, and T. Fujikado, Clin. Ophthalmol. 5, 345 (2011).
[CrossRef]

Liang, J.

Lue, N.

Mihashi, T.

Y. Kitaguchi, S. Kusaka, T. Yamaguchi, T. Mihashi, and T. Fujikado, Clin. Ophthalmol. 5, 345 (2011).
[CrossRef]

Miller, D. T.

Mujat, M.

Patel, A. H.

Poonja, S.

Queener, H.

Romero-Borja, F.

Roorda, A.

Sulai, Y.

Tumbar, R.

Williams, D. R.

Yamaguchi, T.

Y. Kitaguchi, S. Kusaka, T. Yamaguchi, T. Mihashi, and T. Fujikado, Clin. Ophthalmol. 5, 345 (2011).
[CrossRef]

Zhang, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

AI, light source for imaging the anterior part of the eye; OL, objective lens; FL, focusing lens; OE, organic electroluminescence diode display; AC, CCD for anterior imaging; P, focusing prism; HS, horizontal scanner; VS, vertical scanner; DM, deformable mirror; PBS, polarized beam splitter; HM, half-mirror; PH, pinhole; H2, 2 mm diameter hole; PMT, photomultiplier; SH, Shack–Hartmann wavefront sensor; SF, single mode fiber; SLD, superluminescent diode. Most lenses are doublet-type lenses.

Fig. 2.
Fig. 2.

Anti-reflection coating of the objective lens.

Fig. 3.
Fig. 3.

Imaging of the photoreceptor layer of a normal retina at three different magnifications. The images were taken at 5 deg nasal from the fovea. All the images were obtained by averaging 10 images. (a) FOV10, (b) FOV3, and (c) FOV1.5.

Fig. 4.
Fig. 4.

Optical sectioning between retinal photoreceptor layers and nerve fiber layers. (a) A montage FOV10 image of the photoreceptor layer. (b) A montage FOV10 image of the nerve fiber layer. The white bar represents 3.5 deg. (c) The high-resolution image was taken at the location of 1 deg eccentricity from the center of the fovea with FOV1.5 (four images average).

Fig. 5.
Fig. 5.

MTFs. (a) FOV1.5; (b) FOV10 at the center of the fovea; (c) FOV10 at 5 deg nasal from the fovea.

Fig. 6.
Fig. 6.

Images of the photoreceptor layer of occult macular dystrophy. AO-OFF imaging (a) FOV10; (b) and (c) FOV1.5. AO-ON (d) FOV10; (e) and (f) FOV1.5. Images correspond to the arrows in the FOV10 images.

Metrics