Abstract

An electronic method of k-space linearization for an analog camera for use in optical coherence tomography is demonstrated. The method applies a chirp to the data transfer clock signal of the camera in order to temporally compensate for diffraction that is nonlinear in wavenumber. The optimum parameters are obtained experimentally and theoretically and are shown to be in good accordance. Close to maximum measurable axial range, by applying this method, the FWHM of the point spread function is reduced by a factor of 5.6 and sensitivity is increased by 9.8 dB.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Vergnole, D. Lévesque, and G. Lamouche, Opt. Express 18, 10446 (2010).
    [CrossRef]
  2. S. Makita, T. Fabritus, and Y. Yasuno, Opt. Express 16, 8406 (2008).
    [CrossRef]
  3. M. Jeon, J. Kim, U. Jung, C. Lee, W. Jung, and S. A. Boppart, Appl. Opt. 50, 1158 (2011).
    [CrossRef]
  4. Z. Hu and A. M. Rollins, Opt. Lett. 32, 3525 (2007).
    [CrossRef]
  5. G. V. Gelikonov, V. M. Gelikonov, and P. A. Shilyagin, Proc. SPIE 6847, 68470N (2008).
    [CrossRef]

2011

2010

2008

S. Makita, T. Fabritus, and Y. Yasuno, Opt. Express 16, 8406 (2008).
[CrossRef]

G. V. Gelikonov, V. M. Gelikonov, and P. A. Shilyagin, Proc. SPIE 6847, 68470N (2008).
[CrossRef]

2007

Boppart, S. A.

Fabritus, T.

Gelikonov, G. V.

G. V. Gelikonov, V. M. Gelikonov, and P. A. Shilyagin, Proc. SPIE 6847, 68470N (2008).
[CrossRef]

Gelikonov, V. M.

G. V. Gelikonov, V. M. Gelikonov, and P. A. Shilyagin, Proc. SPIE 6847, 68470N (2008).
[CrossRef]

Hu, Z.

Jeon, M.

Jung, U.

Jung, W.

Kim, J.

Lamouche, G.

Lee, C.

Lévesque, D.

Makita, S.

Rollins, A. M.

Shilyagin, P. A.

G. V. Gelikonov, V. M. Gelikonov, and P. A. Shilyagin, Proc. SPIE 6847, 68470N (2008).
[CrossRef]

Vergnole, S.

Yasuno, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of experimental setup. BBS, broadband source; Col, collimator; MM, moving mirror; M, mirror (object); MO, microscope objective; BS, beam splitter; TG, transmission grating; L, achromatic lens; LSC, line scan camera; TCSG, transport clock signal generator; RSG, readout signal generator; SA, spectrum analyzer.

Fig. 2.
Fig. 2.

(a) Readout clock signal, (b) nonchirped transport clock signal, (c) output of camera before linearization, (d) chirped transport clock signal, (e) output of camera after linearization. All traces not to scale and for illustration of timing only.

Fig. 3.
Fig. 3.

Top: FWHM of the FFT peak. Bottom: maximum of the FFT peak as a function of X for a fixed value of OPD=2.00mm.

Fig. 4.
Fig. 4.

Frequency domain peaks for five values of OPD (Δz in Fig. 1). Incremented from 0 in steps of 0.4 mm. Dashed trace, nonchirped transport clock; solid trace, chirped transport clock.

Fig. 5.
Fig. 5.

Top: FWHM of the FFT peak, and bottom: maximum of the FFT peak as a function of OPD. Triangles, nonchirped; squares, chirped transport clock.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

dϕdf=mdcf21(mdcfsinθ)2.

Metrics