Abstract

We demonstrate that airborne light-absorbing particles can be photophoretically trapped and moved inside an optical lattice formed by multiple-beam interference. This technique allows simultaneous three-dimensional manipulation of multiple micro-objects in gases.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, Proc. Natl. Acad. Sci. USA 94, 4853 (1997).
    [CrossRef]
  2. D. G. Grier, Nature 424, 21 (2003).
    [CrossRef]
  3. E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, 2002).
  4. M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
    [CrossRef]
  5. A. S. Desyatnikov, V. Shvedov, A. V. Rode, W. Krolikowski, and Yu. S. Kivshar, Opt. Express 17, 8201 (2009).
    [CrossRef]
  6. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Yu. S. Kivshar, Opt. Express 17, 5743 (2009).
    [CrossRef]
  7. V. G. Shvedov, A. V. Rode, Ya. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
    [CrossRef]
  8. P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, Opt. Lett. 36, 1491 (2011).
    [CrossRef]
  9. V. G. Shvedov, C. Hnatovsky, A. V. Rode, and W. Krolikowski, Opt. Express 19, 17350 (2011).
    [CrossRef]
  10. C. Alpmann, M. Esseling, P. Rose, and C. Denz, Appl. Phys. Lett. 100, 111101 (2012).
    [CrossRef]
  11. V. G. Shvedov, A. V. Rode, Ya. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, Opt. Express 18, 3137 (2010).
    [CrossRef]
  12. J. Steinbach, J. Blum, and M. Krause, Eur. Phys. J. E 15, 287 (2004).
    [CrossRef]
  13. D. W. Keith, Proc. Natl. Acad. Sci. USA 107, 16428 (2010).
    [CrossRef]
  14. A. Melzer, Plasma Source Sci. Technol. 10303 (2001).
    [CrossRef]
  15. A. E. Siegman, Lasers (University Science, 1986).
  16. J. Arlt and M. J. Padgett, Opt. Lett. 25, 191 (2000).
    [CrossRef]
  17. E. G. Gamaly, N. R. Madsen, D. Golberg, and A. V. Rode, Phys. Rev. B 80, 184113 (2009).
    [CrossRef]

2012 (1)

C. Alpmann, M. Esseling, P. Rose, and C. Denz, Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

2011 (2)

2010 (3)

V. G. Shvedov, A. V. Rode, Ya. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, Opt. Express 18, 3137 (2010).
[CrossRef]

D. W. Keith, Proc. Natl. Acad. Sci. USA 107, 16428 (2010).
[CrossRef]

V. G. Shvedov, A. V. Rode, Ya. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef]

2009 (3)

2004 (1)

J. Steinbach, J. Blum, and M. Krause, Eur. Phys. J. E 15, 287 (2004).
[CrossRef]

2003 (1)

D. G. Grier, Nature 424, 21 (2003).
[CrossRef]

2001 (1)

A. Melzer, Plasma Source Sci. Technol. 10303 (2001).
[CrossRef]

2000 (1)

1997 (1)

A. Ashkin, Proc. Natl. Acad. Sci. USA 94, 4853 (1997).
[CrossRef]

1982 (1)

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

Alpmann, C.

C. Alpmann, M. Esseling, P. Rose, and C. Denz, Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

Arlt, J.

Arnold, S.

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

Ashkin, A.

A. Ashkin, Proc. Natl. Acad. Sci. USA 94, 4853 (1997).
[CrossRef]

Blum, J.

J. Steinbach, J. Blum, and M. Krause, Eur. Phys. J. E 15, 287 (2004).
[CrossRef]

Chen, Z.

Christodoulides, D. N.

Davis, E. J.

E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, 2002).

Denz, C.

C. Alpmann, M. Esseling, P. Rose, and C. Denz, Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

Desyatnikov, A. S.

Esseling, M.

C. Alpmann, M. Esseling, P. Rose, and C. Denz, Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

Gamaly, E. G.

E. G. Gamaly, N. R. Madsen, D. Golberg, and A. V. Rode, Phys. Rev. B 80, 184113 (2009).
[CrossRef]

Golberg, D.

E. G. Gamaly, N. R. Madsen, D. Golberg, and A. V. Rode, Phys. Rev. B 80, 184113 (2009).
[CrossRef]

Grier, D. G.

D. G. Grier, Nature 424, 21 (2003).
[CrossRef]

Hernandez, D.

Hnatovsky, C.

Huang, S.

Izdebskaya, Ya. V.

V. G. Shvedov, A. V. Rode, Ya. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, Opt. Express 18, 3137 (2010).
[CrossRef]

V. G. Shvedov, A. V. Rode, Ya. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef]

Keith, D. W.

D. W. Keith, Proc. Natl. Acad. Sci. USA 107, 16428 (2010).
[CrossRef]

Kivshar, Yu. S.

Krause, M.

J. Steinbach, J. Blum, and M. Krause, Eur. Phys. J. E 15, 287 (2004).
[CrossRef]

Krolikowski, W.

Lewittes, M.

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

Madsen, N. R.

E. G. Gamaly, N. R. Madsen, D. Golberg, and A. V. Rode, Phys. Rev. B 80, 184113 (2009).
[CrossRef]

Melzer, A.

A. Melzer, Plasma Source Sci. Technol. 10303 (2001).
[CrossRef]

Oster, G.

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

Padgett, M. J.

Prakash, J.

Rode, A. V.

Rose, P.

C. Alpmann, M. Esseling, P. Rose, and C. Denz, Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

Salazar, M.

Schweiger, G.

E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, 2002).

Shvedov, V.

Shvedov, V. G.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Steinbach, J.

J. Steinbach, J. Blum, and M. Krause, Eur. Phys. J. E 15, 287 (2004).
[CrossRef]

Zhang, P.

Zhang, Z.

Appl. Phys. Lett. (2)

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

C. Alpmann, M. Esseling, P. Rose, and C. Denz, Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

Eur. Phys. J. E (1)

J. Steinbach, J. Blum, and M. Krause, Eur. Phys. J. E 15, 287 (2004).
[CrossRef]

Nature (1)

D. G. Grier, Nature 424, 21 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (1)

E. G. Gamaly, N. R. Madsen, D. Golberg, and A. V. Rode, Phys. Rev. B 80, 184113 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

V. G. Shvedov, A. V. Rode, Ya. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef]

Plasma Source Sci. Technol. (1)

A. Melzer, Plasma Source Sci. Technol. 10303 (2001).
[CrossRef]

Proc. Natl. Acad. Sci. USA (2)

D. W. Keith, Proc. Natl. Acad. Sci. USA 107, 16428 (2010).
[CrossRef]

A. Ashkin, Proc. Natl. Acad. Sci. USA 94, 4853 (1997).
[CrossRef]

Other (2)

A. E. Siegman, Lasers (University Science, 1986).

E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the optical-lattice trapping experiment: L, plano–convex lens; M, checkerboard amplitude mask; BS, beam splitter to launch the white-light illumination beam WL along the 532 nm trapping-beam propagation direction; O1, focusing objective; C, glass cuvette; O2, imaging objective; F, notch filter. The insets show the diffracted beams at the entrance aperture of O1 and the simulated intensity distribution of the optical lattice OL in the yx plane.

Fig. 2.
Fig. 2.

Theoretical analysis of the optical lattice to be used for particle trapping. (a) Parameters of the diffracted beams that generate the lattice. (b) Simulated 2D light intensity distribution in the xz or yz plane obtained at ω0=2.7μm, b=35μm, and α=0.13. (c) Simulated 3D section view of the optical lattice.

Fig. 3.
Fig. 3.

Measured light intensity inside the optical lattice used for particle trapping. (a), (b) Opposite side views of the intensity distribution recorded between z=30μm and z=500μm. (c) 3D section view of the optical lattice; the extent along z is 120 μm. The beam propagation direction, which coincides with the positive z direction, is denoted by arrows. The panels were reconstructed from a stack of images obtained by moving O2 along z in 1 μm steps and recording the corresponding intensity distributions with the CCD (see Fig. 1).

Fig. 4.
Fig. 4.

Manipulation of particles trapped inside the optical lattice. (a) Counterclockwise rotation of a single particle by 90°. (b) Clockwise rotation of four particles by 90°. These correspond to two different locations along z inside the same lattice with generating-beam parameters ω0=2.7μm, b=35μm, and α=0.13. This lattice is also shown in Figs. 2 and 3. (c) Counterclockwise rotation by 20° and translation by 30 μm of multiple particles. The beam parameters are ω0=2.9μm, b=160μm, α=0.15. In (a) and (b), trapping of solid graphite particles is depicted. The power in the optical lattice is 40 mW, which constitutes 30% of the power measured before M (see Fig. 1). In (c), the trapped micro-objects are agglomerates of carbon nanoparticles with complex internal structure that were produced by laser ablation of graphite targets [11,17]. The power in the optical lattice is 80 mW. In all experiments, the trap was loaded by first floating the particles in air and then turning on the trapping beam.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ψn=1σnexp[(xn2+yn2)ω02σn]exp(ikzn),
Ψ0=Aσexp[(x2+y2)ω02σ]exp(ikz).
xn=(xcosφn+ysinφn)cosα+zsinαb,yn=ycosφnxsinφn,zn=zcosα(xcosφn+ysinφn)sinα,

Metrics