Abstract

When a micrometer-sized fluid droplet is illuminated by a laser pulse, there is a fundamental distinction between two cases. If the pulse is short in comparison with the transit time for sound across the droplet, the disruptive optical Abraham–Minkowski radiation force is countered by electrostriction, and the net stress is compressive. In contrast, if the pulse is long on this scale, electrostriction is cancelled by elastic pressure and the surviving term of the electromagnetic force, the Abraham–Minkowski force, is disruptive and deforms the droplet. Ultrashort laser pulses are routinely used in modern experiments, and impressive progress has moreover been made on laser manipulation of liquid surfaces in recent times, making a theory for combining the two pertinent. We analyze the electrostrictive contribution analytically and numerically for a spherical droplet.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-Z. Zhang and R. K. Chang, Opt. Lett. 13, 916 (1988).
    [CrossRef]
  2. H. M. Lai, P. T. Leung, K. L. Poon, and K. Young, J. Opt. Soc. Am. B 6, 2430 (1989).
    [CrossRef]
  3. I. Brevik and R. Kluge, J. Opt. Soc. Am. B 16, 976 (1999).
    [CrossRef]
  4. H. Chraïbi, D. Lasseux, E. Arquis, R. Wunenburger, and J.-P. Delville, Phys. Rev. E 77, 066706 (2008).
    [CrossRef]
  5. S. Å. Ellingsen, Phys. Fluids 24, 022002 (2012).
    [CrossRef]
  6. R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J.-P. Delville, J. Fluid Mech. 666, 273 (2011).
    [CrossRef]
  7. I. Brevik, Phys. Rep. 52, 133 (1979).
    [CrossRef]
  8. S. Å. Ellingsen and I. Brevik, Phys. Fluids 23, 096101 (2011).
    [CrossRef]
  9. A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 30, 139 (1973).
    [CrossRef]
  10. J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4594 (1989).
    [CrossRef]
  11. J. Chen, J. Ng, Z. Lin, and C. T. Chan, Nat. Photon. 5, 531 (2011).
    [CrossRef]
  12. H. Goetz and W. Zahn, Z. Phys. 151, 202 (1958).
    [CrossRef]
  13. W. Zahn, Z. Phys. 166, 275 (1962).
    [CrossRef]

2012 (1)

S. Å. Ellingsen, Phys. Fluids 24, 022002 (2012).
[CrossRef]

2011 (3)

R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J.-P. Delville, J. Fluid Mech. 666, 273 (2011).
[CrossRef]

S. Å. Ellingsen and I. Brevik, Phys. Fluids 23, 096101 (2011).
[CrossRef]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, Nat. Photon. 5, 531 (2011).
[CrossRef]

2008 (1)

H. Chraïbi, D. Lasseux, E. Arquis, R. Wunenburger, and J.-P. Delville, Phys. Rev. E 77, 066706 (2008).
[CrossRef]

1999 (1)

1989 (2)

H. M. Lai, P. T. Leung, K. L. Poon, and K. Young, J. Opt. Soc. Am. B 6, 2430 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4594 (1989).
[CrossRef]

1988 (1)

1979 (1)

I. Brevik, Phys. Rep. 52, 133 (1979).
[CrossRef]

1973 (1)

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 30, 139 (1973).
[CrossRef]

1962 (1)

W. Zahn, Z. Phys. 166, 275 (1962).
[CrossRef]

1958 (1)

H. Goetz and W. Zahn, Z. Phys. 151, 202 (1958).
[CrossRef]

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4594 (1989).
[CrossRef]

Arquis, E.

H. Chraïbi, D. Lasseux, E. Arquis, R. Wunenburger, and J.-P. Delville, Phys. Rev. E 77, 066706 (2008).
[CrossRef]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 30, 139 (1973).
[CrossRef]

Barton, J. P.

J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4594 (1989).
[CrossRef]

Brasselet, E.

R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J.-P. Delville, J. Fluid Mech. 666, 273 (2011).
[CrossRef]

Brevik, I.

S. Å. Ellingsen and I. Brevik, Phys. Fluids 23, 096101 (2011).
[CrossRef]

I. Brevik and R. Kluge, J. Opt. Soc. Am. B 16, 976 (1999).
[CrossRef]

I. Brevik, Phys. Rep. 52, 133 (1979).
[CrossRef]

Chan, C. T.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, Nat. Photon. 5, 531 (2011).
[CrossRef]

Chang, R. K.

Chen, J.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, Nat. Photon. 5, 531 (2011).
[CrossRef]

Chraïbi, H.

H. Chraïbi, D. Lasseux, E. Arquis, R. Wunenburger, and J.-P. Delville, Phys. Rev. E 77, 066706 (2008).
[CrossRef]

Delville, J.-P.

R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J.-P. Delville, J. Fluid Mech. 666, 273 (2011).
[CrossRef]

H. Chraïbi, D. Lasseux, E. Arquis, R. Wunenburger, and J.-P. Delville, Phys. Rev. E 77, 066706 (2008).
[CrossRef]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 30, 139 (1973).
[CrossRef]

Ellingsen, S. Å.

S. Å. Ellingsen, Phys. Fluids 24, 022002 (2012).
[CrossRef]

S. Å. Ellingsen and I. Brevik, Phys. Fluids 23, 096101 (2011).
[CrossRef]

Goetz, H.

H. Goetz and W. Zahn, Z. Phys. 151, 202 (1958).
[CrossRef]

Hourtane, V.

R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J.-P. Delville, J. Fluid Mech. 666, 273 (2011).
[CrossRef]

Issenmann, B.

R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J.-P. Delville, J. Fluid Mech. 666, 273 (2011).
[CrossRef]

Kluge, R.

Lai, H. M.

Lasseux, D.

H. Chraïbi, D. Lasseux, E. Arquis, R. Wunenburger, and J.-P. Delville, Phys. Rev. E 77, 066706 (2008).
[CrossRef]

Leung, P. T.

Lin, Z.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, Nat. Photon. 5, 531 (2011).
[CrossRef]

Loussert, C.

R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J.-P. Delville, J. Fluid Mech. 666, 273 (2011).
[CrossRef]

Ng, J.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, Nat. Photon. 5, 531 (2011).
[CrossRef]

Poon, K. L.

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4594 (1989).
[CrossRef]

Wunenburger, R.

R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J.-P. Delville, J. Fluid Mech. 666, 273 (2011).
[CrossRef]

H. Chraïbi, D. Lasseux, E. Arquis, R. Wunenburger, and J.-P. Delville, Phys. Rev. E 77, 066706 (2008).
[CrossRef]

Young, K.

Zahn, W.

W. Zahn, Z. Phys. 166, 275 (1962).
[CrossRef]

H. Goetz and W. Zahn, Z. Phys. 151, 202 (1958).
[CrossRef]

Zhang, J.-Z.

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4594 (1989).
[CrossRef]

J. Fluid Mech. (1)

R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J.-P. Delville, J. Fluid Mech. 666, 273 (2011).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photon. (1)

J. Chen, J. Ng, Z. Lin, and C. T. Chan, Nat. Photon. 5, 531 (2011).
[CrossRef]

Opt. Lett. (1)

Phys. Fluids (2)

S. Å. Ellingsen and I. Brevik, Phys. Fluids 23, 096101 (2011).
[CrossRef]

S. Å. Ellingsen, Phys. Fluids 24, 022002 (2012).
[CrossRef]

Phys. Rep. (1)

I. Brevik, Phys. Rep. 52, 133 (1979).
[CrossRef]

Phys. Rev. E (1)

H. Chraïbi, D. Lasseux, E. Arquis, R. Wunenburger, and J.-P. Delville, Phys. Rev. E 77, 066706 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 30, 139 (1973).
[CrossRef]

Z. Phys. (2)

H. Goetz and W. Zahn, Z. Phys. 151, 202 (1958).
[CrossRef]

W. Zahn, Z. Phys. 166, 275 (1962).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Force components on front and rear hemispheres. Disruptive force corresponds to positive (negative) value of Q for rear (front) half.

Fig. 2.
Fig. 2.

Electrostriction potential E2/E02 inside droplet for four values of α. Laser beam incident from left.

Fig. 3.
Fig. 3.

Surface force densities σ¯=σ/(ϵ0E02) for AM and ES as functions of polar angle θ. Polar plot of r=σ¯(θ)+20 for illustration (20 is an arbitrary number for visualization).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f=12ϵ0E2ϵ+12[E2ρ(ϵρ)T],
fES=16ϵ0[E2(n21)(n2+2)].
PES=16ϵ0(n21)(n2+2)E2(a)n^σESn^,
Fz,<ES=π3ϵ0(n21)(n2+2)0ardrE2(r)|θ=π2,
PAM=ϵ02(n21)Et2(a)+n2Er2(a)n^σAMn^.
Fz,<AM=2πa2π/2πdθsinθcosθσAM(θ)
QES=2(n21)(n2+2){|c1|2[4I1(nα)+I2(nα)]+|d1|2I3(nα)}/(8α2),
I1(x)=(2x42x21+cos2x+2xsin2x)/(8x4),
I2(x)=12[γ1Ci(2x)+log2x+x2(2xcosxsinx)sinx],
I3(x)=I1(x)+I2(x)x23sin2x+xsin2x2x2.

Metrics