Abstract

The feasibility of using gold nano-rings as plasmonic nano-optical tweezers is investigated. We found that at a resonant wavelength of λ=785nm, the nano-ring produces a maximum trapping potential of 32kBT on gold nanoparticles. The existence of multiple potential wells results in a very large active volume of 106nm3 for trapping the target particles. The report nano-ring design provides an effective approach for manipulating nano-objects in very low concentration into the high-field region and is well suited for integration with microfluidics for lab-on-a-chip applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Juan, M. Righini, and R. Quidant, Nat. Photon. 5, 349 (2011).
    [CrossRef]
  2. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photon. 2, 365 (2008).
    [CrossRef]
  3. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, Nano Lett. 10, 1006 (2010).
    [CrossRef]
  4. H. Xu and M. Käll, Phys. Rev. Lett. 89, 246802 (2002).
    [CrossRef]
  5. Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 98, 083117 (2011).
    [CrossRef]
  6. B. Liu, L. Yang, and Y. Wang, Opt. Express 19, 3703 (2011).
    [CrossRef]
  7. R. Sainidou and F. J. García de Abajo, Phys. Rev. Lett. 101, 136802 (2008).
    [CrossRef]
  8. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, Nat. Phys. 5, 915 (2009).
    [CrossRef]
  9. H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, Appl. Phys. Lett. 99, 061107 (2011).
    [CrossRef]
  10. L. Huang, S. J. Maerkl, and O. J. F. Martin, Opt. Express 17, 6018 (2009).
    [CrossRef]
  11. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, Nano Lett. 11, 321 (2011).
    [CrossRef]
  12. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
    [CrossRef]
  13. M. G. Banaee and K. B. Crozier, Opt. Lett. 35, 760 (2010).
    [CrossRef]
  14. A. Lovera, and O. J. F. Martin, Appl. Phys. Lett. 99, 151104 (2011).
    [CrossRef]
  15. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).
  16. P. B. Johnson, and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  17. B. Auquié, and W. L. Barnes, Phys. Rev. Lett. 101, 143902 (2008).
    [CrossRef]

2011 (6)

M. L. Juan, M. Righini, and R. Quidant, Nat. Photon. 5, 349 (2011).
[CrossRef]

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

B. Liu, L. Yang, and Y. Wang, Opt. Express 19, 3703 (2011).
[CrossRef]

H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, Appl. Phys. Lett. 99, 061107 (2011).
[CrossRef]

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, Nano Lett. 11, 321 (2011).
[CrossRef]

A. Lovera, and O. J. F. Martin, Appl. Phys. Lett. 99, 151104 (2011).
[CrossRef]

2010 (2)

M. G. Banaee and K. B. Crozier, Opt. Lett. 35, 760 (2010).
[CrossRef]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, Nano Lett. 10, 1006 (2010).
[CrossRef]

2009 (2)

L. Huang, S. J. Maerkl, and O. J. F. Martin, Opt. Express 17, 6018 (2009).
[CrossRef]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, Nat. Phys. 5, 915 (2009).
[CrossRef]

2008 (3)

B. Auquié, and W. L. Barnes, Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef]

R. Sainidou and F. J. García de Abajo, Phys. Rev. Lett. 101, 136802 (2008).
[CrossRef]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photon. 2, 365 (2008).
[CrossRef]

2003 (1)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

2002 (1)

H. Xu and M. Käll, Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef]

1972 (1)

P. B. Johnson, and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Aizpurua, J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Auquié, B.

B. Auquié, and W. L. Barnes, Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef]

Banaee, M. G.

Barnes, W. L.

B. Auquié, and W. L. Barnes, Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Cao, J. X.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

Christy, R. W.

P. B. Johnson, and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Crozier, K. B.

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photon. 2, 365 (2008).
[CrossRef]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, Nat. Phys. 5, 915 (2009).
[CrossRef]

García de Abajo, F. J.

R. Sainidou and F. J. García de Abajo, Phys. Rev. Lett. 101, 136802 (2008).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Gates, J. C.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, Appl. Phys. Lett. 99, 061107 (2011).
[CrossRef]

Gordon, R.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, Nat. Phys. 5, 915 (2009).
[CrossRef]

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photon. 2, 365 (2008).
[CrossRef]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Huang, L.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, Nano Lett. 10, 1006 (2010).
[CrossRef]

L. Huang, S. J. Maerkl, and O. J. F. Martin, Opt. Express 17, 6018 (2009).
[CrossRef]

Johnson, P. B.

P. B. Johnson, and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, Nat. Photon. 5, 349 (2011).
[CrossRef]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, Nat. Phys. 5, 915 (2009).
[CrossRef]

Käll, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

H. Xu and M. Käll, Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef]

Li, L.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

Li, T.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

Liu, B.

Liu, H.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

Liu, Y.

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, Nano Lett. 11, 321 (2011).
[CrossRef]

Lovera, A.

A. Lovera, and O. J. F. Martin, Appl. Phys. Lett. 99, 151104 (2011).
[CrossRef]

Maerkl, S. J.

Martin, O. J. F.

A. Lovera, and O. J. F. Martin, Appl. Phys. Lett. 99, 151104 (2011).
[CrossRef]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, Nano Lett. 10, 1006 (2010).
[CrossRef]

L. Huang, S. J. Maerkl, and O. J. F. Martin, Opt. Express 17, 6018 (2009).
[CrossRef]

Oulton, R. F.

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, Nano Lett. 11, 321 (2011).
[CrossRef]

Pang, Y.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, Nat. Phys. 5, 915 (2009).
[CrossRef]

Pruneri, V.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, Appl. Phys. Lett. 99, 061107 (2011).
[CrossRef]

Quidant, R.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, Appl. Phys. Lett. 99, 061107 (2011).
[CrossRef]

M. L. Juan, M. Righini, and R. Quidant, Nat. Photon. 5, 349 (2011).
[CrossRef]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, Nat. Phys. 5, 915 (2009).
[CrossRef]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, Nat. Photon. 5, 349 (2011).
[CrossRef]

H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, Appl. Phys. Lett. 99, 061107 (2011).
[CrossRef]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photon. 2, 365 (2008).
[CrossRef]

Sainidou, R.

R. Sainidou and F. J. García de Abajo, Phys. Rev. Lett. 101, 136802 (2008).
[CrossRef]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, Nano Lett. 10, 1006 (2010).
[CrossRef]

Smith, P. G. R.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, Appl. Phys. Lett. 99, 061107 (2011).
[CrossRef]

Sullivan, D. M.

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Wang, S. M.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

Wang, Y.

B. Liu, L. Yang, and Y. Wang, Opt. Express 19, 3703 (2011).
[CrossRef]

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

Wong, H. M. K.

H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, Appl. Phys. Lett. 99, 061107 (2011).
[CrossRef]

Xu, H.

H. Xu and M. Käll, Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef]

Yang, L.

Yang, X.

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, Nano Lett. 11, 321 (2011).
[CrossRef]

Yin, X.

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, Nano Lett. 11, 321 (2011).
[CrossRef]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, Nano Lett. 10, 1006 (2010).
[CrossRef]

Zhang, X.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, Nano Lett. 11, 321 (2011).
[CrossRef]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photon. 2, 365 (2008).
[CrossRef]

Zheng, Y. J.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

Zhu, C.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

Zhu, S. N.

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Li, C. Zhu, Y. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 98, 083117 (2011).
[CrossRef]

H. M. K. Wong, M. Righini, J. C. Gates, P. G. R. Smith, V. Pruneri, and R. Quidant, Appl. Phys. Lett. 99, 061107 (2011).
[CrossRef]

A. Lovera, and O. J. F. Martin, Appl. Phys. Lett. 99, 151104 (2011).
[CrossRef]

Nano Lett. (2)

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, Nano Lett. 11, 321 (2011).
[CrossRef]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, Nano Lett. 10, 1006 (2010).
[CrossRef]

Nat. Photon. (2)

M. L. Juan, M. Righini, and R. Quidant, Nat. Photon. 5, 349 (2011).
[CrossRef]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photon. 2, 365 (2008).
[CrossRef]

Nat. Phys. (1)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, Nat. Phys. 5, 915 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson, and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. Lett. (4)

B. Auquié, and W. L. Barnes, Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

R. Sainidou and F. J. García de Abajo, Phys. Rev. Lett. 101, 136802 (2008).
[CrossRef]

H. Xu and M. Käll, Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef]

Other (1)

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of one unit cell of the gold nano-ring arrays. (b) Extinction (solid curve) of the nano-ring arrays and the E2 spectrum (dotted curve) of the nano-ring edge as indicated by a black dot in Fig. 1(a). Dimensions of nano-ring: D1=40nm, D2=100nm, t=35nm, and L=525nm.

Fig. 2.
Fig. 2.

(a) Fz acting on the Au-NP (solid curve) and the PS (dotted curve, magnified 10 times) as a function of incident wavelength. Both NPs have a diameter of 20 nm and are located at coordinates of (0,0,35)nm as indicated by a dark dot in the cross-section schematic. (b) Spectra of Fz on the Au-NP (circles) and the PS (squares, magnified 10 times) as a function of position along the z axis (x=y=0) and the electric field intensity gradient along this axis (dotted curve), respectively. Excitation wavelength: 785 nm.

Fig. 3.
Fig. 3.

(a) Spectra of Fx (circles) and Fz (squares) as a function of location along the axis of (x,0,50)nm (indicated by thick arrow in cross-section schematic). (b) Spectra of Fx and Fz as a function of position along the axes of (65,0,z)nm (indicated by thick solid arrow) (circles for Fx and squares for Fz), and (5,0,z)nm (indicated by thick dotted arrow) (dotted curve with circles for Fx and dotted curve with squares for Fz), respectively. The incident wavelength is 785 nm.

Fig. 4.
Fig. 4.

Electric field distribution in the xz plane and the trapping boundary (white circles) |U|=kBT. Excitation wavelength and power density are respectively 785 nm and 1mW/μm2.

Metrics