Abstract

Optical microcavities are high sensitivity transducers able to detect single nanoparticles and molecules. However, the specificity of detection is dependent on the availability of an appropriate targeting moiety with minimal cross-reactivity. In the present work, an alternative approach is shown. Namely, using biotin-functionalized toroidal microcavities, the dissociation constant of biotin to two different streptavidin complexes (free and polystyrene bead) is determined. Based on the difference in affinity and in mass transport, the two complexes are identified from a mixture. By leveraging information in the binding site, improved specificity can be achieved.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Washburn and R. C. Bailey, Analyst 136, 227 (2010).
    [CrossRef]
  2. H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
    [CrossRef]
  3. D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, Microfluid Nanofluid 4, 33 (2008).
    [CrossRef]
  4. M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, Lab on a Chip 11, 2042 (2011).
    [CrossRef]
  5. C. Soteropulos, H. Hunt, and A. M. Armani, Appl. Phys. Lett. 99, 103703 (2011).
    [CrossRef]
  6. A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
    [CrossRef]
  7. W. E. Paul, Fundamental Immunology5th ed. (Lippincott, Williams & Wilkins, Philadelphia, 2003), p. 1700.
  8. D. G. Myszka, Curr. Opin. Biotech 8, 50 (1997).
    [CrossRef]
  9. S. Zhao and W. M. Reichert, Langmuir 8, 2785 (1992).
    [CrossRef]
  10. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, Nature 421, 925 (2003).
    [CrossRef]
  11. H. K. Hunt, C. Soteropulos, and A. M. Armani, Sensors 10, 9317 (2010).
    [CrossRef]
  12. X. Zhang, H. S. Choi, and A. M. Armani, Appl. Phys. Lett. 96, 153304 (2010).
    [CrossRef]
  13. A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
    [CrossRef]
  14. N. M. Green, Methods 184, 51 (1990).
    [CrossRef]
  15. V. H. Perez-Luna, M. J. O’Brien, K. A. Opperman, P. D. Hampton, G. P. Lopez, L. A. Klumb, and P. S. Stayton, J. Am. Chem. Soc. 121, 6469 (1999).
    [CrossRef]
  16. P. Schuck and A. P. Minton, Anal. Biochem. 240, 262 (1996).
    [CrossRef]
  17. J. M. Gamba and R. C. Flagan, Appl. Phys. Lett. 99, 253705 (2011).
    [CrossRef]

2011

M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, Lab on a Chip 11, 2042 (2011).
[CrossRef]

C. Soteropulos, H. Hunt, and A. M. Armani, Appl. Phys. Lett. 99, 103703 (2011).
[CrossRef]

J. M. Gamba and R. C. Flagan, Appl. Phys. Lett. 99, 253705 (2011).
[CrossRef]

2010

A. L. Washburn and R. C. Bailey, Analyst 136, 227 (2010).
[CrossRef]

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef]

H. K. Hunt, C. Soteropulos, and A. M. Armani, Sensors 10, 9317 (2010).
[CrossRef]

X. Zhang, H. S. Choi, and A. M. Armani, Appl. Phys. Lett. 96, 153304 (2010).
[CrossRef]

2008

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, Microfluid Nanofluid 4, 33 (2008).
[CrossRef]

2006

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

2005

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

2003

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, Nature 421, 925 (2003).
[CrossRef]

1999

V. H. Perez-Luna, M. J. O’Brien, K. A. Opperman, P. D. Hampton, G. P. Lopez, L. A. Klumb, and P. S. Stayton, J. Am. Chem. Soc. 121, 6469 (1999).
[CrossRef]

1997

D. G. Myszka, Curr. Opin. Biotech 8, 50 (1997).
[CrossRef]

1996

P. Schuck and A. P. Minton, Anal. Biochem. 240, 262 (1996).
[CrossRef]

1992

S. Zhao and W. M. Reichert, Langmuir 8, 2785 (1992).
[CrossRef]

1990

N. M. Green, Methods 184, 51 (1990).
[CrossRef]

Armani, A. M.

C. Soteropulos, H. Hunt, and A. M. Armani, Appl. Phys. Lett. 99, 103703 (2011).
[CrossRef]

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef]

H. K. Hunt, C. Soteropulos, and A. M. Armani, Sensors 10, 9317 (2010).
[CrossRef]

X. Zhang, H. S. Choi, and A. M. Armani, Appl. Phys. Lett. 96, 153304 (2010).
[CrossRef]

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Armani, D.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, Nature 421, 925 (2003).
[CrossRef]

Armani, D. K.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Bailey, R. C.

M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, Lab on a Chip 11, 2042 (2011).
[CrossRef]

A. L. Washburn and R. C. Bailey, Analyst 136, 227 (2010).
[CrossRef]

Choi, H. S.

X. Zhang, H. S. Choi, and A. M. Armani, Appl. Phys. Lett. 96, 153304 (2010).
[CrossRef]

Cordovez, B.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, Microfluid Nanofluid 4, 33 (2008).
[CrossRef]

Erickson, D.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, Microfluid Nanofluid 4, 33 (2008).
[CrossRef]

Flagan, R. C.

J. M. Gamba and R. C. Flagan, Appl. Phys. Lett. 99, 253705 (2011).
[CrossRef]

Gamba, J. M.

J. M. Gamba and R. C. Flagan, Appl. Phys. Lett. 99, 253705 (2011).
[CrossRef]

Green, N. M.

N. M. Green, Methods 184, 51 (1990).
[CrossRef]

Hampton, P. D.

V. H. Perez-Luna, M. J. O’Brien, K. A. Opperman, P. D. Hampton, G. P. Lopez, L. A. Klumb, and P. S. Stayton, J. Am. Chem. Soc. 121, 6469 (1999).
[CrossRef]

Hunt, H.

C. Soteropulos, H. Hunt, and A. M. Armani, Appl. Phys. Lett. 99, 103703 (2011).
[CrossRef]

Hunt, H. K.

H. K. Hunt, C. Soteropulos, and A. M. Armani, Sensors 10, 9317 (2010).
[CrossRef]

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef]

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

Kippenberg, T.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, Nature 421, 925 (2003).
[CrossRef]

Klumb, L. A.

V. H. Perez-Luna, M. J. O’Brien, K. A. Opperman, P. D. Hampton, G. P. Lopez, L. A. Klumb, and P. S. Stayton, J. Am. Chem. Soc. 121, 6469 (1999).
[CrossRef]

Lopez, G. P.

V. H. Perez-Luna, M. J. O’Brien, K. A. Opperman, P. D. Hampton, G. P. Lopez, L. A. Klumb, and P. S. Stayton, J. Am. Chem. Soc. 121, 6469 (1999).
[CrossRef]

Luchansky, M. S.

M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, Lab on a Chip 11, 2042 (2011).
[CrossRef]

Mandal, S.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, Microfluid Nanofluid 4, 33 (2008).
[CrossRef]

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

McClellan, M. S.

M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, Lab on a Chip 11, 2042 (2011).
[CrossRef]

Min, B.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Minton, A. P.

P. Schuck and A. P. Minton, Anal. Biochem. 240, 262 (1996).
[CrossRef]

Myszka, D. G.

D. G. Myszka, Curr. Opin. Biotech 8, 50 (1997).
[CrossRef]

O’Brien, M. J.

V. H. Perez-Luna, M. J. O’Brien, K. A. Opperman, P. D. Hampton, G. P. Lopez, L. A. Klumb, and P. S. Stayton, J. Am. Chem. Soc. 121, 6469 (1999).
[CrossRef]

Opperman, K. A.

V. H. Perez-Luna, M. J. O’Brien, K. A. Opperman, P. D. Hampton, G. P. Lopez, L. A. Klumb, and P. S. Stayton, J. Am. Chem. Soc. 121, 6469 (1999).
[CrossRef]

Paul, W. E.

W. E. Paul, Fundamental Immunology5th ed. (Lippincott, Williams & Wilkins, Philadelphia, 2003), p. 1700.

Perez-Luna, V. H.

V. H. Perez-Luna, M. J. O’Brien, K. A. Opperman, P. D. Hampton, G. P. Lopez, L. A. Klumb, and P. S. Stayton, J. Am. Chem. Soc. 121, 6469 (1999).
[CrossRef]

Reichert, W. M.

S. Zhao and W. M. Reichert, Langmuir 8, 2785 (1992).
[CrossRef]

Schuck, P.

P. Schuck and A. P. Minton, Anal. Biochem. 240, 262 (1996).
[CrossRef]

Soteropulos, C.

C. Soteropulos, H. Hunt, and A. M. Armani, Appl. Phys. Lett. 99, 103703 (2011).
[CrossRef]

H. K. Hunt, C. Soteropulos, and A. M. Armani, Sensors 10, 9317 (2010).
[CrossRef]

Spillane, S.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, Nature 421, 925 (2003).
[CrossRef]

Spillane, S. M.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Stayton, P. S.

V. H. Perez-Luna, M. J. O’Brien, K. A. Opperman, P. D. Hampton, G. P. Lopez, L. A. Klumb, and P. S. Stayton, J. Am. Chem. Soc. 121, 6469 (1999).
[CrossRef]

Vahala, K.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, Nature 421, 925 (2003).
[CrossRef]

Vahala, K. J.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Washburn, A. L.

M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, Lab on a Chip 11, 2042 (2011).
[CrossRef]

A. L. Washburn and R. C. Bailey, Analyst 136, 227 (2010).
[CrossRef]

Yang, A. H. J.

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, Microfluid Nanofluid 4, 33 (2008).
[CrossRef]

Zhang, X.

X. Zhang, H. S. Choi, and A. M. Armani, Appl. Phys. Lett. 96, 153304 (2010).
[CrossRef]

Zhao, S.

S. Zhao and W. M. Reichert, Langmuir 8, 2785 (1992).
[CrossRef]

Anal. Biochem.

P. Schuck and A. P. Minton, Anal. Biochem. 240, 262 (1996).
[CrossRef]

Analyst

A. L. Washburn and R. C. Bailey, Analyst 136, 227 (2010).
[CrossRef]

Appl. Phys. Lett.

J. M. Gamba and R. C. Flagan, Appl. Phys. Lett. 99, 253705 (2011).
[CrossRef]

C. Soteropulos, H. Hunt, and A. M. Armani, Appl. Phys. Lett. 99, 103703 (2011).
[CrossRef]

X. Zhang, H. S. Choi, and A. M. Armani, Appl. Phys. Lett. 96, 153304 (2010).
[CrossRef]

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Curr. Opin. Biotech

D. G. Myszka, Curr. Opin. Biotech 8, 50 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

J. Am. Chem. Soc.

V. H. Perez-Luna, M. J. O’Brien, K. A. Opperman, P. D. Hampton, G. P. Lopez, L. A. Klumb, and P. S. Stayton, J. Am. Chem. Soc. 121, 6469 (1999).
[CrossRef]

Lab on a Chip

M. S. Luchansky, A. L. Washburn, M. S. McClellan, and R. C. Bailey, Lab on a Chip 11, 2042 (2011).
[CrossRef]

Langmuir

S. Zhao and W. M. Reichert, Langmuir 8, 2785 (1992).
[CrossRef]

Methods

N. M. Green, Methods 184, 51 (1990).
[CrossRef]

Microfluid Nanofluid

D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, Microfluid Nanofluid 4, 33 (2008).
[CrossRef]

Nanoscale

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef]

Nature

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, Nature 421, 925 (2003).
[CrossRef]

Sensors

H. K. Hunt, C. Soteropulos, and A. M. Armani, Sensors 10, 9317 (2010).
[CrossRef]

Other

W. E. Paul, Fundamental Immunology5th ed. (Lippincott, Williams & Wilkins, Philadelphia, 2003), p. 1700.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the detection process. (a) The surface of the silica microtoroid is biotin functionalized. The free streptavidin in solution binds to the microtoroid first. Once the free streptavidin begins to dissociate, the streptavidin-polybeads, which contain numerous streptavidin molecules per bead, can bind. (b) A scanning electron micrograph of a biotin functionalized microtoroid with major (minor) diameter at 105 µm (5 µm).

Fig. 2.
Fig. 2.

A representative transmission spectrum. The Q factor is calculated to be 3.27×106 according to Q=λ/Δλ.

Fig. 3.
Fig. 3.

Detection based on Kd. (a) The resonant wavelength shifts as the solution containing the streptavidin and the streptavidin-polybeads is injected. Two clearly identifiable peaks are observed. (b) Calculation of Kd1 by the slope and (c) calculation of Kd2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ln(λ(t)/λo)=Kdt,

Metrics