Abstract

Micrometer-sized particles are trapped in front of an air-filled hollow-core photonic crystal fiber using a novel dual-beam trap. A backward guided mode produces a divergent beam that diffracts out of the core, and simultaneously a focused laser beam launches a forward-propagating mode into the core. By changing the backward/forward power balance, a trapped particle can be selectively launched into the hollow core. Once inside, particles can be optically propelled along several meters of fiber with mobilities as high as 19cm·s1W1 (precisely measured using in-fiber Doppler velocimetry). The results are in excellent agreement with theory. The system allows determination of fiber loss as well as the mass density and refractive index of single particles.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
    [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
    [CrossRef]
  3. K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
    [CrossRef]
  4. R. Omori, T. Kobayashi, and A. Suzuki, Opt. Lett. 22, 816 (1997).
    [CrossRef]
  5. M. Michihata, T. Hayashi, D. Nakai, and Y. Takaya, Rev. Sci. Instrum. 81, 015107 (2010).
    [CrossRef]
  6. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
    [CrossRef]
  7. R. Di Leonardo, G. Ruocco, J. Leach, M. J. Padgett, A. J. Wright, J. M. Girkin, D. R. Burnham, and D. McGloin, Phys. Rev. Lett. 99, 010601 (2007).
    [CrossRef]
  8. D. R. Burnham, P. J. Reece, and D. McGloin, Phys. Rev. E 82, 051123 (2010).
    [CrossRef]
  9. M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
    [CrossRef]
  10. F. Benabid, J. Knight, and P. St. J. Russell, Opt. Express 10, 1195 (2002).
  11. T. G. Euser, M. K. Garbos, J. S. Y. Chen, and P. St. J. Russell, Opt. Lett. 34, 3674 (2009).
    [CrossRef]
  12. A. Ashkin, Biophys. J. 61, 569 (1992).
    [CrossRef]
  13. M. K. Garbos, T. G. Euser, O. A. Schmidt, S. Unterkofler, and P. St. J. Russell, Opt. Lett. 36, 2020 (2011).
    [CrossRef]
  14. N. Al Quddus, W. A. Moussa, and S. Bhattacharjee, J. Colloid Interface Sci. 317, 620 (2008).
    [CrossRef]
  15. E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

2011 (1)

2010 (3)

M. Michihata, T. Hayashi, D. Nakai, and Y. Takaya, Rev. Sci. Instrum. 81, 015107 (2010).
[CrossRef]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef]

D. R. Burnham, P. J. Reece, and D. McGloin, Phys. Rev. E 82, 051123 (2010).
[CrossRef]

2009 (1)

2008 (1)

N. Al Quddus, W. A. Moussa, and S. Bhattacharjee, J. Colloid Interface Sci. 317, 620 (2008).
[CrossRef]

2007 (1)

R. Di Leonardo, G. Ruocco, J. Leach, M. J. Padgett, A. J. Wright, J. M. Girkin, D. R. Burnham, and D. McGloin, Phys. Rev. Lett. 99, 010601 (2007).
[CrossRef]

2004 (1)

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

2002 (1)

1999 (1)

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

1997 (1)

1992 (1)

A. Ashkin, Biophys. J. 61, 569 (1992).
[CrossRef]

1971 (1)

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[CrossRef]

1970 (1)

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Al Quddus, N.

N. Al Quddus, W. A. Moussa, and S. Bhattacharjee, J. Colloid Interface Sci. 317, 620 (2008).
[CrossRef]

Ashkin, A.

A. Ashkin, Biophys. J. 61, 569 (1992).
[CrossRef]

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[CrossRef]

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Benabid, F.

Bhattacharjee, S.

N. Al Quddus, W. A. Moussa, and S. Bhattacharjee, J. Colloid Interface Sci. 317, 620 (2008).
[CrossRef]

Block, S. M.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Burnham, D. R.

D. R. Burnham, P. J. Reece, and D. McGloin, Phys. Rev. E 82, 051123 (2010).
[CrossRef]

R. Di Leonardo, G. Ruocco, J. Leach, M. J. Padgett, A. J. Wright, J. M. Girkin, D. R. Burnham, and D. McGloin, Phys. Rev. Lett. 99, 010601 (2007).
[CrossRef]

Chen, J. S. Y.

Desyatnikov, A. S.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef]

Di Leonardo, R.

R. Di Leonardo, G. Ruocco, J. Leach, M. J. Padgett, A. J. Wright, J. M. Girkin, D. R. Burnham, and D. McGloin, Phys. Rev. Lett. 99, 010601 (2007).
[CrossRef]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[CrossRef]

Euser, T. G.

Garbos, M. K.

Girkin, J. M.

R. Di Leonardo, G. Ruocco, J. Leach, M. J. Padgett, A. J. Wright, J. M. Girkin, D. R. Burnham, and D. McGloin, Phys. Rev. Lett. 99, 010601 (2007).
[CrossRef]

Hayashi, T.

M. Michihata, T. Hayashi, D. Nakai, and Y. Takaya, Rev. Sci. Instrum. 81, 015107 (2010).
[CrossRef]

Izdebskaya, Y. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef]

Kivshar, Y. S.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef]

Knight, J.

Kobayashi, T.

Krolikowski, W.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef]

Leach, J.

R. Di Leonardo, G. Ruocco, J. Leach, M. J. Padgett, A. J. Wright, J. M. Girkin, D. R. Burnham, and D. McGloin, Phys. Rev. Lett. 99, 010601 (2007).
[CrossRef]

Lewandowski, H. J.

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

McGloin, D.

D. R. Burnham, P. J. Reece, and D. McGloin, Phys. Rev. E 82, 051123 (2010).
[CrossRef]

R. Di Leonardo, G. Ruocco, J. Leach, M. J. Padgett, A. J. Wright, J. M. Girkin, D. R. Burnham, and D. McGloin, Phys. Rev. Lett. 99, 010601 (2007).
[CrossRef]

Michihata, M.

M. Michihata, T. Hayashi, D. Nakai, and Y. Takaya, Rev. Sci. Instrum. 81, 015107 (2010).
[CrossRef]

Moussa, W. A.

N. Al Quddus, W. A. Moussa, and S. Bhattacharjee, J. Colloid Interface Sci. 317, 620 (2008).
[CrossRef]

Nakai, D.

M. Michihata, T. Hayashi, D. Nakai, and Y. Takaya, Rev. Sci. Instrum. 81, 015107 (2010).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Omori, R.

Padgett, M. J.

R. Di Leonardo, G. Ruocco, J. Leach, M. J. Padgett, A. J. Wright, J. M. Girkin, D. R. Burnham, and D. McGloin, Phys. Rev. Lett. 99, 010601 (2007).
[CrossRef]

Pastel, R.

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

Reece, P. J.

D. R. Burnham, P. J. Reece, and D. McGloin, Phys. Rev. E 82, 051123 (2010).
[CrossRef]

Renn, M. J.

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

Rode, A. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef]

Ruocco, G.

R. Di Leonardo, G. Ruocco, J. Leach, M. J. Padgett, A. J. Wright, J. M. Girkin, D. R. Burnham, and D. McGloin, Phys. Rev. Lett. 99, 010601 (2007).
[CrossRef]

Russell, P. St. J.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Schmidt, O. A.

Shvedov, V. G.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef]

Suzuki, A.

Takaya, Y.

M. Michihata, T. Hayashi, D. Nakai, and Y. Takaya, Rev. Sci. Instrum. 81, 015107 (2010).
[CrossRef]

Unterkofler, S.

Wright, A. J.

R. Di Leonardo, G. Ruocco, J. Leach, M. J. Padgett, A. J. Wright, J. M. Girkin, D. R. Burnham, and D. McGloin, Phys. Rev. Lett. 99, 010601 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Biophys. J. (1)

A. Ashkin, Biophys. J. 61, 569 (1992).
[CrossRef]

J. Colloid Interface Sci. (1)

N. Al Quddus, W. A. Moussa, and S. Bhattacharjee, J. Colloid Interface Sci. 317, 620 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. E (1)

D. R. Burnham, P. J. Reece, and D. McGloin, Phys. Rev. E 82, 051123 (2010).
[CrossRef]

Phys. Rev. Lett. (4)

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef]

R. Di Leonardo, G. Ruocco, J. Leach, M. J. Padgett, A. J. Wright, J. M. Girkin, D. R. Burnham, and D. McGloin, Phys. Rev. Lett. 99, 010601 (2007).
[CrossRef]

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Rev. Sci. Instrum. (2)

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

M. Michihata, T. Hayashi, D. Nakai, and Y. Takaya, Rev. Sci. Instrum. 81, 015107 (2010).
[CrossRef]

Supplementary Material (1)

» Media 1: MPG (2483 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic top view of setup (HWP, half-wave plate; PBS, polarizing beam splitter; M, mirror; MO, microscope objective) and (inset) side view of dual-beam trap with higher divergence of outcoupled beam. (b) SEM of HC-PCF structure and (c) measured near-field intensity profile at 1064 nm. (d) SEM of silica particles, showing the large dispersion in diameter d (nominally d = 5 μm ). (e) Side-view image of particle trapped at fiber entrance (Media 1).

Fig. 2.
Fig. 2.

Plots of trap stiffness and axial optical force. Note that P in + P out = 1 W in all these plots. (a) Radial stiffness as a function of d and axial particle position for ξ in = 0.5 . (b) Radial stiffness at several equally spaced normalized inward powers ξ in = P in / ( P in + P out ) for d = 5 μm . (c) Net axial force as a function of d and axial position for ξ in = 0.5 ; the contour lines indicate positions of stable and unstable equilibrium. (d) Net axial force for several equally spaced values of ξ in and d = 5 μm ; the encircled zero crossings correspond to trapping positions.

Fig. 3.
Fig. 3.

(a) Vertical and (b) horizontal arrangement of the fiber lengths used in the speed measurements. (c) Particle speeds (left axis) and their difference (right axis), showing the effects of fiber loss and gravity.

Fig. 4.
Fig. 4.

Doppler-based measurements of optical mobility (triangles, left axis) and speed difference (circles, right axis) for different values of d (determined by optical microscopy). Comparison with theory (curves) allows determination of refractive index and mass density.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F opt ± F grav = F drag = 3 π η K 1 v d ,
μ = F opt 3 π η K 1 P d = n Q 3 π η K 1 c d .
Δ v grav = 2 m g 3 π η K 1 d = ρ g d 2 9 π η K 1 ,

Metrics