Abstract

This Letter presents a useful method that combines the full range complex Fourier domain optical coherence tomography (OCT) with the ultrahigh sensitive optical microangiography (OMAG) to achieve full range complex imaging of blood flow within microcirculatory tissue beds in vivo. We propose to use the fast scanning axis to realize the full range complex imaging, while using the slow axis to achieve OMAG imaging of blood flow. We demonstrate the proposed method by using a high speed 1310nm OCT/OMAG system running at 92kHz line scan rate to image the flow phantoms in vitro, and the blood flows in tissue beds in vivo.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
    [CrossRef]
  2. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, Opt. Express 15, 4083 (2007).
    [CrossRef] [PubMed]
  3. L. An, J. Qin, and R. K. Wang, Opt. Express 18, 8220 (2010)
    [CrossRef] [PubMed]
  4. Y. L. Jia and R. K. Wang, J. Neurosci. Methods 194, 108(2010)
    [CrossRef] [PubMed]
  5. Y. Jung, Z. W. Zhi, and R. K. Wang, J Biomed. Opt. 15, 050101 (2010).
    [CrossRef]
  6. R. K. Wang, L. An, P. Francis, and D. Wilson, Opt. Lett. 35, 1467 (2010).
    [CrossRef] [PubMed]
  7. Y. H. Zhao, Z. P. Chen, Z. H. Ding, H. Ren, and J. S. Nelson, Opt. Lett. 27, 98 (2002).
    [CrossRef]
  8. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, Opt. Express 17, 14281(2009)
    [CrossRef] [PubMed]
  9. R. K. Wang, Phys. Med. Biol. 52, 5897 (2007)
    [CrossRef] [PubMed]
  10. F. Jaillon, S. Makita, M. Yabusaki, and Y. Yasuno, Opt. Express 18, 1358 (2010)
    [CrossRef] [PubMed]
  11. R. K. Wang and L. An, Opt. Express 17, 8926 (2009)
    [CrossRef] [PubMed]
  12. R. K. Wang, Appl. Phys. Lett. 90, 054103 (2007).
    [CrossRef]
  13. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, Opt. Express 15, 13375 (2007).
    [CrossRef] [PubMed]
  14. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, Opt. Lett. 32, 3453 (2007).
    [CrossRef] [PubMed]
  15. L. An and R. K. Wang, Opt. Lett. 32, 3423 (2007).
    [CrossRef] [PubMed]
  16. A. Mariampillai, M. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, Opt. Lett. 35, 1257 (2010).
    [CrossRef] [PubMed]
  17. Y. K. Tao, K. M. Kennedy, and J. A. Izatt, Opt. Express 17, 4177 (2009).
    [CrossRef] [PubMed]

2010 (6)

2009 (3)

2007 (6)

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

2002 (1)

An, L.

Baumann, B.

Chen, Z. P.

Ding, Z. H.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

Francis, P.

Götzinger, E.

Gruber, A.

Grulkowski, I.

Hanson, S. R.

Hitzenberger, C. K.

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, Opt. Express 15, 13375 (2007).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

Hurst, S.

Izatt, J. A.

Jacques, S. L.

Jaillon, F.

Jarvi, M.

Jia, Y. L.

Y. L. Jia and R. K. Wang, J. Neurosci. Methods 194, 108(2010)
[CrossRef] [PubMed]

Jung, Y.

Y. Jung, Z. W. Zhi, and R. K. Wang, J Biomed. Opt. 15, 050101 (2010).
[CrossRef]

Kennedy, K. M.

Kowalczyk, A.

Lasser, T.

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, Opt. Lett. 32, 3453 (2007).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

Lee, K.

Leitgeb, R. A.

Leung, M.

Ma, Z.

Makita, S.

Mariampillai, A.

Michaely, R.

Nelson, J. S.

Pircher, M.

Qin, J.

Ren, H.

Sekhar, S. C.

Standish, B. A.

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tao, Y. K.

Vitkin, A.

Wang, R. K.

Wilson, B. C.

Wilson, D.

Wojtkowski, M.

Yabusaki, M.

Yang, V. X. D.

Yasuno, Y.

Zhao, Y. H.

Zhi, Z. W.

Y. Jung, Z. W. Zhi, and R. K. Wang, J Biomed. Opt. 15, 050101 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

R. K. Wang, Appl. Phys. Lett. 90, 054103 (2007).
[CrossRef]

J Biomed. Opt. (1)

Y. Jung, Z. W. Zhi, and R. K. Wang, J Biomed. Opt. 15, 050101 (2010).
[CrossRef]

J. Neurosci. Methods (1)

Y. L. Jia and R. K. Wang, J. Neurosci. Methods 194, 108(2010)
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (5)

Phys. Med. Biol. (1)

R. K. Wang, Phys. Med. Biol. 52, 5897 (2007)
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic system setup used in this study, with (b) its measured system sensitivity. PC, polarization controller.

Fig. 2
Fig. 2

OCT structural and OMAG flow images that resulted from a flow phantom. Each figure consists of a pair of images with the structural image on the left and the flow image on the right. (a) and (c) are the results from the conventional approach, and (b) and (d) are the corresponding results from the FRC imaging approach.

Fig. 3
Fig. 3

Mouse ear imaged in vivo by (a) conventional and (b) FRC-OCT imaging of microstructures, and the corresponding (c) conventional and (d) FRC-UHS-OMAG imaging of blood flows. Note that the images are truncated to remove the top and bottom parts that do not contain useful information. Dashed line indicates the zero delay line.

Fig. 4
Fig. 4

2D projection views of (a) FRC-OCT structural image and (b) FRC-UHS-OMAG blood flow image from the 3D tissue volume.

Metrics