Abstract

Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required imaging with multiple-laser-wavelength measurements to quantify oxygen saturation. Eliminating the need for multiwavelength measurements removes the influence of spectral properties on oxygenation calculations and improves the portability and cost-effectiveness of functional or molecular photoacoustic microscopy.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Laufer, D. Delpy, C. Elwell, and P. C. Beard, Phys. Med. Biol. 52, 141 (2007).
    [CrossRef]
  2. X. Wang, X. Xie, G. Ku, and L. V. Wang, J. Biomed. Opt. 11, 024015 (2006).
    [CrossRef] [PubMed]
  3. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
    [CrossRef] [PubMed]
  4. C. Kim, C. Favazza, and L. V. Wang, Chem. Rev. 110, 2756 (2010).
    [CrossRef] [PubMed]
  5. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
    [CrossRef]
  6. K. Maslov, H. F. Zhang, and L. V. Wang, Inverse Probl. 23, S113 (2007).
    [CrossRef]
  7. A. M. Bonch-Bruevich, T. K. Razumova, and I. O. Starobogatov, Opt. Spectrosc. 42, 45 (1977).
  8. C. Tam and C. K. N. Patel, Nature 280, 304 (1979).
    [CrossRef]
  9. A. Danielli, C. Favazza, K. Maslov, and L. V. Wang, Appl. Phys. Lett. 97, 163701 (2010).
    [CrossRef] [PubMed]
  10. L. V. Wang and H. Wu, Biomedical Optics—Principles and Imaging (Wiley, 2007).
  11. S. Hu, K. Maslov, and L. V. Wang, Opt. Express 17, 7688 (2009).
    [CrossRef] [PubMed]
  12. A. Naditz, Telemed. J. E Health 16, 139 (2010).
    [CrossRef] [PubMed]

2010

C. Kim, C. Favazza, and L. V. Wang, Chem. Rev. 110, 2756 (2010).
[CrossRef] [PubMed]

A. Danielli, C. Favazza, K. Maslov, and L. V. Wang, Appl. Phys. Lett. 97, 163701 (2010).
[CrossRef] [PubMed]

A. Naditz, Telemed. J. E Health 16, 139 (2010).
[CrossRef] [PubMed]

2009

S. Hu, K. Maslov, and L. V. Wang, Opt. Express 17, 7688 (2009).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

2007

K. Maslov, H. F. Zhang, and L. V. Wang, Inverse Probl. 23, S113 (2007).
[CrossRef]

J. G. Laufer, D. Delpy, C. Elwell, and P. C. Beard, Phys. Med. Biol. 52, 141 (2007).
[CrossRef]

2006

X. Wang, X. Xie, G. Ku, and L. V. Wang, J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

1979

C. Tam and C. K. N. Patel, Nature 280, 304 (1979).
[CrossRef]

1977

A. M. Bonch-Bruevich, T. K. Razumova, and I. O. Starobogatov, Opt. Spectrosc. 42, 45 (1977).

Beard, P. C.

J. G. Laufer, D. Delpy, C. Elwell, and P. C. Beard, Phys. Med. Biol. 52, 141 (2007).
[CrossRef]

Bonch-Bruevich, A. M.

A. M. Bonch-Bruevich, T. K. Razumova, and I. O. Starobogatov, Opt. Spectrosc. 42, 45 (1977).

Danielli, A.

A. Danielli, C. Favazza, K. Maslov, and L. V. Wang, Appl. Phys. Lett. 97, 163701 (2010).
[CrossRef] [PubMed]

Delpy, D.

J. G. Laufer, D. Delpy, C. Elwell, and P. C. Beard, Phys. Med. Biol. 52, 141 (2007).
[CrossRef]

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

Elwell, C.

J. G. Laufer, D. Delpy, C. Elwell, and P. C. Beard, Phys. Med. Biol. 52, 141 (2007).
[CrossRef]

Favazza, C.

A. Danielli, C. Favazza, K. Maslov, and L. V. Wang, Appl. Phys. Lett. 97, 163701 (2010).
[CrossRef] [PubMed]

C. Kim, C. Favazza, and L. V. Wang, Chem. Rev. 110, 2756 (2010).
[CrossRef] [PubMed]

Hu, S.

Kim, C.

C. Kim, C. Favazza, and L. V. Wang, Chem. Rev. 110, 2756 (2010).
[CrossRef] [PubMed]

Koster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

Ku, G.

X. Wang, X. Xie, G. Ku, and L. V. Wang, J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

Laufer, J. G.

J. G. Laufer, D. Delpy, C. Elwell, and P. C. Beard, Phys. Med. Biol. 52, 141 (2007).
[CrossRef]

Ma, R.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

Maslov, K.

A. Danielli, C. Favazza, K. Maslov, and L. V. Wang, Appl. Phys. Lett. 97, 163701 (2010).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, Opt. Express 17, 7688 (2009).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, Inverse Probl. 23, S113 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

Naditz, A.

A. Naditz, Telemed. J. E Health 16, 139 (2010).
[CrossRef] [PubMed]

Ntziachristos, V.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

Patel, C. K. N.

C. Tam and C. K. N. Patel, Nature 280, 304 (1979).
[CrossRef]

Perrimon, N.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

Razansky, D.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

Razumova, T. K.

A. M. Bonch-Bruevich, T. K. Razumova, and I. O. Starobogatov, Opt. Spectrosc. 42, 45 (1977).

Starobogatov, I. O.

A. M. Bonch-Bruevich, T. K. Razumova, and I. O. Starobogatov, Opt. Spectrosc. 42, 45 (1977).

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

Tam, C.

C. Tam and C. K. N. Patel, Nature 280, 304 (1979).
[CrossRef]

Vinegoni, C.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

Wang, L. V.

A. Danielli, C. Favazza, K. Maslov, and L. V. Wang, Appl. Phys. Lett. 97, 163701 (2010).
[CrossRef] [PubMed]

C. Kim, C. Favazza, and L. V. Wang, Chem. Rev. 110, 2756 (2010).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, Opt. Express 17, 7688 (2009).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, Inverse Probl. 23, S113 (2007).
[CrossRef]

X. Wang, X. Xie, G. Ku, and L. V. Wang, J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

L. V. Wang and H. Wu, Biomedical Optics—Principles and Imaging (Wiley, 2007).

Wang, X.

X. Wang, X. Xie, G. Ku, and L. V. Wang, J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

Wu, H.

L. V. Wang and H. Wu, Biomedical Optics—Principles and Imaging (Wiley, 2007).

Xie, X.

X. Wang, X. Xie, G. Ku, and L. V. Wang, J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

Zhang, H. F.

K. Maslov, H. F. Zhang, and L. V. Wang, Inverse Probl. 23, S113 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

A. Danielli, C. Favazza, K. Maslov, and L. V. Wang, Appl. Phys. Lett. 97, 163701 (2010).
[CrossRef] [PubMed]

Chem. Rev.

C. Kim, C. Favazza, and L. V. Wang, Chem. Rev. 110, 2756 (2010).
[CrossRef] [PubMed]

Inverse Probl.

K. Maslov, H. F. Zhang, and L. V. Wang, Inverse Probl. 23, S113 (2007).
[CrossRef]

J. Biomed. Opt.

X. Wang, X. Xie, G. Ku, and L. V. Wang, J. Biomed. Opt. 11, 024015 (2006).
[CrossRef] [PubMed]

Nat. Biotechnol.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

Nat. Photon.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, Nat. Photon. 3, 412 (2009).
[CrossRef]

Nature

C. Tam and C. K. N. Patel, Nature 280, 304 (1979).
[CrossRef]

Opt. Express

Opt. Spectrosc.

A. M. Bonch-Bruevich, T. K. Razumova, and I. O. Starobogatov, Opt. Spectrosc. 42, 45 (1977).

Phys. Med. Biol.

J. G. Laufer, D. Delpy, C. Elwell, and P. C. Beard, Phys. Med. Biol. 52, 141 (2007).
[CrossRef]

Telemed. J. E Health

A. Naditz, Telemed. J. E Health 16, 139 (2010).
[CrossRef] [PubMed]

Other

L. V. Wang and H. Wu, Biomedical Optics—Principles and Imaging (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Ultrasonic and optical beam coupling diagram.

Fig. 2
Fig. 2

Extraction of the average attenuation in tissue. (a) Depth map of a mouse ear, (b) the exponential fitting (blue dashed curve) and the normalized pulse energy as a function of depth (solid red dots). The error bars represent the standard error of the mean value at three incident intensities ( N = 3 ).

Fig. 3
Fig. 3

Saturation profiles of PA signals and sO 2 mapping in a mouse ear. Average PA amplitude as a function of the fluence (a) at a low sO 2 location (a vein) and (b) at a high sO 2 location (an artery). Error bars represent the standard deviations in 15 adjacent measurements. Oxygen saturation mapping using (c) single-wavelength ( 576 nm ) and (d) dual- wavelength (576 and 592 nm ) measurements.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

q ( F ) K · μ a · F ,
μ a = σ HbR · N HbR + σ HbO 2 · N HbO 2 ,
q ( F ) K · [ σ HbR · N HbR 1 + F / ( τ laser · I sat HbR ) · F + σ HbO 2 · N HbO 2 1 + F / ( τ laser · I sat HbO 2 ) · F ] ,
[ K · N HbR K · N HbO 2 ] = ( H T H ) 1 H T × y ̲ ,
H = [ a 11 a i 1 a n 1 a 12 a i 2 a n 2 ] ; a i 1 = σ HbR 1 + F i / ( τ laser · I sat HbR ) · F i ; a i 2 = σ HbO 2 1 + F i / ( τ laser · I sat HbO 2 ) · F i ; i = 1 n .
sO 2 = N HbO 2 N HbR + N HbO 2 ,

Metrics