Abstract

In order to characterize surface chemomechanical phenomena driving microelectromechanical systems behavior, we propose herein a method to simultaneously obtain a full kinematic field describing the surface displacement and a map of its chemical modification from optical measurements. Using a microscope, reflected intensity fields are recorded for two different illumination wavelengths. Decoupling the wavelength-independent and -dependent contributions to the measured relative intensity changes then yields the sought fields. This method is applied to the investigation of the electroelastic coupling, providing images of both the local surface electrical charge density and the device deformation field.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).
  2. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, Science 288, 316 (2000).
    [PubMed]
  3. M. F. Hagan, A. Majumdar, and A. K. Chakraborty, J. Phys. Chem. B 106, 10163 (2002).
  4. G. Jin, P. Tengvall, I. Lundström, and H. Arwin, Anal. Biochem. 232, 69 (1995).
    [PubMed]
  5. Q. Li and H. S. White, Anal. Chem. 67, 561 (1995).
  6. J. Feinleib, Phys. Rev. Lett. 16, 1200 (1966).
  7. G. Tessier, S. Holé, and D. Fournier, Appl. Phys. Lett. 78, 2267 (2001).
  8. J. Mertens, M. Álvarez, and J. Tamayo, Appl. Phys. Lett. 87, 234102 (2005).
  9. F. Amiot and J. P. Roger, Appl. Opt. 45, 7800 (2006).
    [PubMed]
  10. M. Godin, O. Laroche, V. Tabard-Cossa, L. Y. Beaulieu, P. Grütter, and P. J. Williams, Rev. Sci. Instrum. 74, 4902 (2003).
  11. F. Amiot, F. Hild, F. Kanoufi, and J. P. Roger, J. Appl. Phys. D 40,, 3314 (2007).
  12. R. Kofman, R. Garrigos, and P. Cheyssac, Thin Solid Films 82, 73 (1981).

2007 (1)

F. Amiot, F. Hild, F. Kanoufi, and J. P. Roger, J. Appl. Phys. D 40,, 3314 (2007).

2006 (1)

2005 (1)

J. Mertens, M. Álvarez, and J. Tamayo, Appl. Phys. Lett. 87, 234102 (2005).

2004 (1)

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).

2003 (1)

M. Godin, O. Laroche, V. Tabard-Cossa, L. Y. Beaulieu, P. Grütter, and P. J. Williams, Rev. Sci. Instrum. 74, 4902 (2003).

2002 (1)

M. F. Hagan, A. Majumdar, and A. K. Chakraborty, J. Phys. Chem. B 106, 10163 (2002).

2001 (1)

G. Tessier, S. Holé, and D. Fournier, Appl. Phys. Lett. 78, 2267 (2001).

2000 (1)

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, Science 288, 316 (2000).
[PubMed]

1995 (2)

G. Jin, P. Tengvall, I. Lundström, and H. Arwin, Anal. Biochem. 232, 69 (1995).
[PubMed]

Q. Li and H. S. White, Anal. Chem. 67, 561 (1995).

1981 (1)

R. Kofman, R. Garrigos, and P. Cheyssac, Thin Solid Films 82, 73 (1981).

1966 (1)

J. Feinleib, Phys. Rev. Lett. 16, 1200 (1966).

Álvarez, M.

J. Mertens, M. Álvarez, and J. Tamayo, Appl. Phys. Lett. 87, 234102 (2005).

Amiot, F.

F. Amiot, F. Hild, F. Kanoufi, and J. P. Roger, J. Appl. Phys. D 40,, 3314 (2007).

F. Amiot and J. P. Roger, Appl. Opt. 45, 7800 (2006).
[PubMed]

Arwin, H.

G. Jin, P. Tengvall, I. Lundström, and H. Arwin, Anal. Biochem. 232, 69 (1995).
[PubMed]

Baller, M. K.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, Science 288, 316 (2000).
[PubMed]

Beaulieu, L. Y.

M. Godin, O. Laroche, V. Tabard-Cossa, L. Y. Beaulieu, P. Grütter, and P. J. Williams, Rev. Sci. Instrum. 74, 4902 (2003).

Chakraborty, A. K.

M. F. Hagan, A. Majumdar, and A. K. Chakraborty, J. Phys. Chem. B 106, 10163 (2002).

Cheyssac, P.

R. Kofman, R. Garrigos, and P. Cheyssac, Thin Solid Films 82, 73 (1981).

Datskos, P. G.

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).

Feinleib, J.

J. Feinleib, Phys. Rev. Lett. 16, 1200 (1966).

Fournier, D.

G. Tessier, S. Holé, and D. Fournier, Appl. Phys. Lett. 78, 2267 (2001).

Fritz, J.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, Science 288, 316 (2000).
[PubMed]

Garrigos, R.

R. Kofman, R. Garrigos, and P. Cheyssac, Thin Solid Films 82, 73 (1981).

Gerber, Ch.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, Science 288, 316 (2000).
[PubMed]

Gimzewski, J. K.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, Science 288, 316 (2000).
[PubMed]

Godin, M.

M. Godin, O. Laroche, V. Tabard-Cossa, L. Y. Beaulieu, P. Grütter, and P. J. Williams, Rev. Sci. Instrum. 74, 4902 (2003).

Grütter, P.

M. Godin, O. Laroche, V. Tabard-Cossa, L. Y. Beaulieu, P. Grütter, and P. J. Williams, Rev. Sci. Instrum. 74, 4902 (2003).

Güntherodt, H.-J.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, Science 288, 316 (2000).
[PubMed]

Hagan, M. F.

M. F. Hagan, A. Majumdar, and A. K. Chakraborty, J. Phys. Chem. B 106, 10163 (2002).

Hild, F.

F. Amiot, F. Hild, F. Kanoufi, and J. P. Roger, J. Appl. Phys. D 40,, 3314 (2007).

Holé, S.

G. Tessier, S. Holé, and D. Fournier, Appl. Phys. Lett. 78, 2267 (2001).

Jin, G.

G. Jin, P. Tengvall, I. Lundström, and H. Arwin, Anal. Biochem. 232, 69 (1995).
[PubMed]

Kanoufi, F.

F. Amiot, F. Hild, F. Kanoufi, and J. P. Roger, J. Appl. Phys. D 40,, 3314 (2007).

Kofman, R.

R. Kofman, R. Garrigos, and P. Cheyssac, Thin Solid Films 82, 73 (1981).

Lang, H. P.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, Science 288, 316 (2000).
[PubMed]

Laroche, O.

M. Godin, O. Laroche, V. Tabard-Cossa, L. Y. Beaulieu, P. Grütter, and P. J. Williams, Rev. Sci. Instrum. 74, 4902 (2003).

Lavrik, N. V.

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).

Li, Q.

Q. Li and H. S. White, Anal. Chem. 67, 561 (1995).

Lundström, I.

G. Jin, P. Tengvall, I. Lundström, and H. Arwin, Anal. Biochem. 232, 69 (1995).
[PubMed]

Majumdar, A.

M. F. Hagan, A. Majumdar, and A. K. Chakraborty, J. Phys. Chem. B 106, 10163 (2002).

Mertens, J.

J. Mertens, M. Álvarez, and J. Tamayo, Appl. Phys. Lett. 87, 234102 (2005).

Meyer, E.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, Science 288, 316 (2000).
[PubMed]

Roger, J. P.

F. Amiot, F. Hild, F. Kanoufi, and J. P. Roger, J. Appl. Phys. D 40,, 3314 (2007).

F. Amiot and J. P. Roger, Appl. Opt. 45, 7800 (2006).
[PubMed]

Rothuizen, H.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, Science 288, 316 (2000).
[PubMed]

Sepaniak, M. J.

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).

Tabard-Cossa, V.

M. Godin, O. Laroche, V. Tabard-Cossa, L. Y. Beaulieu, P. Grütter, and P. J. Williams, Rev. Sci. Instrum. 74, 4902 (2003).

Tamayo, J.

J. Mertens, M. Álvarez, and J. Tamayo, Appl. Phys. Lett. 87, 234102 (2005).

Tengvall, P.

G. Jin, P. Tengvall, I. Lundström, and H. Arwin, Anal. Biochem. 232, 69 (1995).
[PubMed]

Tessier, G.

G. Tessier, S. Holé, and D. Fournier, Appl. Phys. Lett. 78, 2267 (2001).

Vettiger, P.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, Science 288, 316 (2000).
[PubMed]

White, H. S.

Q. Li and H. S. White, Anal. Chem. 67, 561 (1995).

Williams, P. J.

M. Godin, O. Laroche, V. Tabard-Cossa, L. Y. Beaulieu, P. Grütter, and P. J. Williams, Rev. Sci. Instrum. 74, 4902 (2003).

Anal. Biochem. (1)

G. Jin, P. Tengvall, I. Lundström, and H. Arwin, Anal. Biochem. 232, 69 (1995).
[PubMed]

Anal. Chem. (1)

Q. Li and H. S. White, Anal. Chem. 67, 561 (1995).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

G. Tessier, S. Holé, and D. Fournier, Appl. Phys. Lett. 78, 2267 (2001).

J. Mertens, M. Álvarez, and J. Tamayo, Appl. Phys. Lett. 87, 234102 (2005).

J. Appl. Phys. D (1)

F. Amiot, F. Hild, F. Kanoufi, and J. P. Roger, J. Appl. Phys. D 40,, 3314 (2007).

J. Phys. Chem. B (1)

M. F. Hagan, A. Majumdar, and A. K. Chakraborty, J. Phys. Chem. B 106, 10163 (2002).

Phys. Rev. Lett. (1)

J. Feinleib, Phys. Rev. Lett. 16, 1200 (1966).

Rev. Sci. Instrum. (2)

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).

M. Godin, O. Laroche, V. Tabard-Cossa, L. Y. Beaulieu, P. Grütter, and P. J. Williams, Rev. Sci. Instrum. 74, 4902 (2003).

Science (1)

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, Science 288, 316 (2000).
[PubMed]

Thin Solid Films (1)

R. Kofman, R. Garrigos, and P. Cheyssac, Thin Solid Films 82, 73 (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

a, Experimental setup with two sequentially triggered sources; b, sensitivity of the collected intensity to the surface orientation; c, light sources timing.

Fig. 2
Fig. 2

Relative intensity changes R wd ˜ ( λ R ) (top) and R wi ˜ (bottom) identified along the substrate ( x 0 ) and the beam ( x 0 ) during the loading cycle (time along the vertical axis). The cantilever is anchored at x = 0 (dashed line).

Fig. 3
Fig. 3

Averages of R wi and R wd on the substrate and at the end of the beam versus the electrode charge A × X i . The solid lines are linear fits to each dataset. Calibrated values of the surface charge density (triangles) and surface rotation (circles) can be read on the right ordinate axis.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I m ( P , λ , t n ) = I i ( P , λ ) R ( P , λ , t n ) ε ( θ ( P ) , t n ) ,
R ( P , λ , t n ) = R 0 ( P , λ ) [ 1 + r ( λ ) X ( P , t n ) ] ,
ε ( θ ( P ) , t n ) = ε 0 ( θ 0 ( P ) ) [ 1 + d θ 0 ( P ) ( θ ( P , t n ) θ 0 ( P ) ) ] ,
I m ( P , λ , t n ) = I a ( P , λ ) [ 1 + R wd ( λ , P , t n ) + R wi ( P , t n ) ] ,
I a ( P , λ ) = I i ( P , λ ) R 0 ( P , λ ) ε 0 ( θ 0 ( P ) ) , R wd ( λ , P , t n ) = r ( λ ) X ( P , t n ) , R wi ( P , t n ) = d θ 0 ( P ) ( θ ( P , t n ) θ 0 ( P ) ) .
[ I m ( λ R ) I a ( λ R ) I m ( λ G ) I a ( λ G ) ] = [ I a ( λ R ) I a ( λ R ) k I a ( λ G ) I a ( λ G ) ] [ R wd ( λ R ) R wi ] ,
η 2 ( P , λ , I a ( P , λ ) , { c q } ) = n = 1 N [ I m ( P , λ , t n ) I a ( P , λ ) f ( X i , { c q } ) ] 2 ,
f ( X i , { c q } ) = 1 + q = 1 Q c q X i q ( t n ) .
κ 2 ( λ , { c q } ) = P Ω s η 2 ( P , λ , I a sol ( P , λ ) , { c q } ) .

Metrics