Abstract

We propose that a tapered photonic crystal waveguide design can unify optical trapping and transport functionalities to advance the controllability of optical manipulation. Subwavelength particles can be trapped by a resonance-enhanced field and transported to a specified position along the waveguide on demand by varying the input wavelength. A simulated transport ability as high as 148 (transport distance/wavelength variation) is obtained by the waveguide with 0.1° tilted angle. Stable trapping of a 50nm polystyrene particle can be achieved with input power of 7mW. We anticipate that this design would be beneficial for future life science research and optomech anical applications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [PubMed]
  2. M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
  3. S. Kawata and T. Sugiura, Opt. Lett. 17, 772 (1992).
    [PubMed]
  4. L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997).
  5. K. Okamoto and S. Kawata, Phys. Rev. Lett. 83, 4534 (1999).
  6. A. Rahmani and P. C. Chaumet, Opt. Express 14, 6353(2006).
    [PubMed]
  7. M. Barth and O. Benson, Appl. Phys. Lett. 89, 253114(2006).
  8. S. Kawata and T. Tani, Opt. Lett. 21, 1768 (1996).
    [PubMed]
  9. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, Opt. Express 13, 6956 (2005).
    [PubMed]
  10. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
    [PubMed]
  11. B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).
  12. T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).
  13. Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).
  14. A. Rohrbach and E. H. K. Stelzer, J. Opt. Soc. Am. A 18, 839 (2001).
  15. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Opt. Lett. 29, 1209 (2004).
    [PubMed]

2009 (1)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[PubMed]

2006 (2)

M. Barth and O. Benson, Appl. Phys. Lett. 89, 253114(2006).

A. Rahmani and P. C. Chaumet, Opt. Express 14, 6353(2006).
[PubMed]

2005 (2)

2004 (3)

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Opt. Lett. 29, 1209 (2004).
[PubMed]

2001 (1)

1999 (1)

K. Okamoto and S. Kawata, Phys. Rev. Lett. 83, 4534 (1999).

1997 (1)

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997).

1996 (2)

Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).

S. Kawata and T. Tani, Opt. Lett. 21, 1768 (1996).
[PubMed]

1992 (1)

1986 (1)

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).

Almeida, V. R.

Asakura, T.

Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).

Asano, T.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).

Ashkin, A.

Baba, T.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).

Barrios, C. A.

Barth, M.

M. Barth and O. Benson, Appl. Phys. Lett. 89, 253114(2006).

Benson, O.

M. Barth and O. Benson, Appl. Phys. Lett. 89, 253114(2006).

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997).

Bjorkholm, J. E.

Chatelain, F.

Chaumet, P. C.

Chon, J. W. M.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).

Chu, S.

Colas, G.

Dérouard, J.

Dziedzic, J. M.

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[PubMed]

Fedeli, J. M.

Fuchs, A.

Gan, X.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).

Gaugiran, S.

Gétin, S.

Gu, M.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).

Harada, Y.

Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).

Haumonte, J. B.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).

Inoshita, K.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).

Kawata, S.

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[PubMed]

Kuroki, Y.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[PubMed]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Opt. Lett. 29, 1209 (2004).
[PubMed]

Micheau, Y.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[PubMed]

Mori, D.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).

Noda, S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).

Novotny, L.

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997).

Okamoto, K.

K. Okamoto and S. Kawata, Phys. Rev. Lett. 83, 4534 (1999).

Rahmani, A.

Rohrbach, A.

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[PubMed]

Song, B. S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).

Stelzer, E. H. K.

Sugiura, T.

Tani, T.

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997).

Xu, Q.

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[PubMed]

Appl. Phys. Lett. (2)

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).

M. Barth and O. Benson, Appl. Phys. Lett. 89, 253114(2006).

IEEE J. Sel. Top. Quantum Electron. (1)

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).

J. Opt. Soc. Am. A (1)

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).

Nature (1)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Nature 457, 71 (2009).
[PubMed]

Opt. Commun. (1)

Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997).

K. Okamoto and S. Kawata, Phys. Rev. Lett. 83, 4534 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic illustration of the proposed tapered PC WG and the corresponding local band diagrams. (b) Illustration of the PC slab structure.

Fig. 2
Fig. 2

(a)–(e) H y -field distributions in the tapered PC WG with θ = 0.1 ° under different λ as indicated. Localized SWRs at EPs and hence the trapping positions are indicated by the arrows.

Fig. 3
Fig. 3

Potential distributions near the EP of the tapered PC WG with θ = 0.5 ° in x z -plane: (a) 0.254 a , (b) 0.098 a above the slab surface, and (c) at the slab center. The input wavelength λ is 3.20 a and the input power is 7 mW . Inset is the E x -field distribution in x z -plane 0.098 a above the slab surface.

Fig. 4
Fig. 4

(a) Schematic illustration of the slotted tapered PC WG. (b) E z -field distribution at the slab center. (c) The corresponding potential distribution near the EP.

Metrics