Abstract

We propose a dynamic operational mode and the resulting dynamic line narrowing as a method for enhancing the resolution and the detection limit of high-quality (high-Q) resonant optical sensors. Using a silica microtoroid as an experimental platform, we demonstrate that dynamic line narrowing through the thermo-optic effect can significantly improve the detection limit in both resonant shift and resonance splitting operating modes.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
    [CrossRef]
  2. F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
    [CrossRef] [PubMed]
  3. J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, Nat. Photon. 4, 46 (2010).
    [CrossRef]
  4. T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004).
    [CrossRef] [PubMed]
  5. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef] [PubMed]
  6. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, J. Opt. Soc. Am. B 17, 1051 (2000).
    [CrossRef]
  7. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
    [CrossRef]

2010 (1)

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, Nat. Photon. 4, 46 (2010).
[CrossRef]

2008 (1)

F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

2002 (2)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
[CrossRef]

2000 (1)

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Arnold, S.

F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

Carmon, T.

Chen, D.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, Nat. Photon. 4, 46 (2010).
[CrossRef]

Gorodetsky, M. L.

He, L.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, Nat. Photon. 4, 46 (2010).
[CrossRef]

Ilchenko, V. S.

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
[CrossRef]

Li, L.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, Nat. Photon. 4, 46 (2010).
[CrossRef]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, Nat. Photon. 4, 46 (2010).
[CrossRef]

Pryamikov, A. D.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
[CrossRef]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

Vahala, K. J.

Vollmer, F.

F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

Xiao, Y.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, Nat. Photon. 4, 46 (2010).
[CrossRef]

Yang, L.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, Nat. Photon. 4, 46 (2010).
[CrossRef]

T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004).
[CrossRef] [PubMed]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, Nat. Photon. 4, 46 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Methods (1)

F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
[CrossRef] [PubMed]

Nat. Photon. (1)

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, Nat. Photon. 4, 46 (2010).
[CrossRef]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram showing the relationship between linewidth-narrowing factor (η) and the parameters affecting it. (b) Simulated temporal change of the temperature at the optical mode location for a silica microtoroid. Here P in = 100 μW , Q L = 4.6 × 10 6 , D = 45 μm , d = 5 μm , and D p = 10 μm . The inset shows the temperature distribution and heat dissipation (steam lines) for the same silica microtoroid for t > t s . (c) Measured η plotted against v scan for a silica microtoroid. Here P in = 72 μW , Q L = 4.6 × 10 6 , Q 0 = 6.04 × 10 7 , D 45 μm , d 5 μm , and D p 10 μm . The insets show the corresponding transmission power spectrums and the direction of laser scan.

Fig. 2
Fig. 2

Experimental and calculated values of η plotted against input optical power P in . (Here v scan = 15.2 nm / s .) The inset shows η plotted against d n / d T at P in = 50 μW . (In both cases Q L = 1.4 × 10 6 ).

Fig. 3
Fig. 3

(a)  Δ λ s , th / δ λ d and Δ λ s / δ λ 0 (no thermal effect) plotted against P in . Here v scan = 15.2 nm / s . (b) Measured transmitted optical power plotted against scanning time at P in = 1.82 μW with negligible thermal effect (bottom), and P in = 420 μW where significant thermal narrowing is observable (top). The black trace is the original transmission response ( Δ n eff = 0 ); the gray and light-gray traces are shifted response due to external perturbation ( Δ n eff = 1.4 × 10 6 and 3.1 × 10 6 , respectively). For both (a) and (b), Q 0 = 1.25 × 10 7 and Q L = 1.09 × 10 6 .

Fig. 4
Fig. 4

(a) Measured transmitted optical power plotted against scanning time for a high-Q split mode with ( P in = 177 μW ) and without thermal narrowing ( P in = 34.5 μW ). Here v scan = 15.2 nm / s . (b) Measured Δ λ s , th / δ λ d plotted against P in .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ s , th Δ n s n 0 λ 0 + λ 0 ( 1 + Δ n s n 0 ) ( ε + d n d T 1 n 0 + Δ n s ) Δ T ,

Metrics