Abstract

Is the helical-coil form of the eccrine sweat-gland in humans suggestive of latent electromagnetic antenna function? In short, do humans possess in these saline, fluid-supporting, coil-structures, an extrasensory/signaling apparatus? This is the hypothesis of Feldman et al. [Phys. Rev. Lett. 100, 128102 (2008); Phys. Med. Biol. 54, 3341 (2009)] as they sort to correlate the mental state of a person with his or her W-band emission response. Ney et al. [Opt. Lett. 35, 3180 (2010); J. Biomed. Opt. 16, 067006 (2011)] subsequently contested this and demonstrated theoretically that multiple interference arising from the layered morphology of skin is the principal mechanism governing sub-THz electromagnetic functionality of human skin. This paper repeats the experimental work of Feldman et al. A quasi-optical reflectometer is employed and we observe extreme sensitivity from individual to individual in horn-antenna reflection measurements. Variability in dielectric properties and the layered morphology of human skin is confirmed to be the source of such sensitivity. Numerical modeling and experimental data together point to the key role of the sweat-duct in characterizing the phenomena of skin W-band resonance behavior. Significantly, however, we see no correlation between the mental state of a person and their W-band reflection response.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mogensen, L. Theane, T. M. Jorgensen, P. E. Andrsen, and G. B. E. Jemec, J. Biophotonics 2, 442 (2009).
    [CrossRef] [PubMed]
  2. S. Gabriel, R. W. Lau, and C. Gabriel, Phys. Med. Biol. 41, 2251 (1996).
    [CrossRef] [PubMed]
  3. A. Knüttel and M. Böhlau-Godau, J. Biomed. Opt. 5, 83(2000).
    [CrossRef] [PubMed]
  4. T. R. Wells and B. H. Landing, J. Invest. Dermatol. 51, 177(1968).
    [PubMed]
  5. Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, and A. J. Agranat, Phys. Rev. Lett. 100, 128102 (2008).
    [CrossRef] [PubMed]
  6. Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, I. Davidovich, F. Sakram, and A. J. Agranat, Phys. Med. Biol. 54, 3341 (2009).
    [CrossRef] [PubMed]
  7. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed. (Wiley, 2011), pp. 231–235.
  8. M. Ney and I. Abdulhalim, Opt. Lett. 35, 3180 (2010).
    [CrossRef] [PubMed]
  9. M. Ney and I. Abdulhalim, J. Biomed. Opt. 16, 067006(2011).
    [CrossRef] [PubMed]
  10. B. Yang, R. S. Donnan, R. Dubrovka, and W. Tang, J. Appl. Phys. 109, 104505 (2011).
    [CrossRef]
  11. O. P. Gandhi and A. Riazi, IEEE Trans. Microwave Theory Tech. 34, 228 (1986).
    [CrossRef]

2011 (2)

M. Ney and I. Abdulhalim, J. Biomed. Opt. 16, 067006(2011).
[CrossRef] [PubMed]

B. Yang, R. S. Donnan, R. Dubrovka, and W. Tang, J. Appl. Phys. 109, 104505 (2011).
[CrossRef]

2010 (1)

2009 (2)

Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, I. Davidovich, F. Sakram, and A. J. Agranat, Phys. Med. Biol. 54, 3341 (2009).
[CrossRef] [PubMed]

M. Mogensen, L. Theane, T. M. Jorgensen, P. E. Andrsen, and G. B. E. Jemec, J. Biophotonics 2, 442 (2009).
[CrossRef] [PubMed]

2008 (1)

Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, and A. J. Agranat, Phys. Rev. Lett. 100, 128102 (2008).
[CrossRef] [PubMed]

2000 (1)

A. Knüttel and M. Böhlau-Godau, J. Biomed. Opt. 5, 83(2000).
[CrossRef] [PubMed]

1996 (1)

S. Gabriel, R. W. Lau, and C. Gabriel, Phys. Med. Biol. 41, 2251 (1996).
[CrossRef] [PubMed]

1986 (1)

O. P. Gandhi and A. Riazi, IEEE Trans. Microwave Theory Tech. 34, 228 (1986).
[CrossRef]

1968 (1)

T. R. Wells and B. H. Landing, J. Invest. Dermatol. 51, 177(1968).
[PubMed]

Abdulhalim, I.

Agranat, A. J.

Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, I. Davidovich, F. Sakram, and A. J. Agranat, Phys. Med. Biol. 54, 3341 (2009).
[CrossRef] [PubMed]

Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, and A. J. Agranat, Phys. Rev. Lett. 100, 128102 (2008).
[CrossRef] [PubMed]

Andrsen, P. E.

M. Mogensen, L. Theane, T. M. Jorgensen, P. E. Andrsen, and G. B. E. Jemec, J. Biophotonics 2, 442 (2009).
[CrossRef] [PubMed]

Böhlau-Godau, M.

A. Knüttel and M. Böhlau-Godau, J. Biomed. Opt. 5, 83(2000).
[CrossRef] [PubMed]

Caduff, A.

Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, I. Davidovich, F. Sakram, and A. J. Agranat, Phys. Med. Biol. 54, 3341 (2009).
[CrossRef] [PubMed]

Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, and A. J. Agranat, Phys. Rev. Lett. 100, 128102 (2008).
[CrossRef] [PubMed]

Davidovich, I.

Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, I. Davidovich, F. Sakram, and A. J. Agranat, Phys. Med. Biol. 54, 3341 (2009).
[CrossRef] [PubMed]

Donnan, R. S.

B. Yang, R. S. Donnan, R. Dubrovka, and W. Tang, J. Appl. Phys. 109, 104505 (2011).
[CrossRef]

Dubrovka, R.

B. Yang, R. S. Donnan, R. Dubrovka, and W. Tang, J. Appl. Phys. 109, 104505 (2011).
[CrossRef]

Feldman, Y.

Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, I. Davidovich, F. Sakram, and A. J. Agranat, Phys. Med. Biol. 54, 3341 (2009).
[CrossRef] [PubMed]

Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, and A. J. Agranat, Phys. Rev. Lett. 100, 128102 (2008).
[CrossRef] [PubMed]

Gabriel, C.

S. Gabriel, R. W. Lau, and C. Gabriel, Phys. Med. Biol. 41, 2251 (1996).
[CrossRef] [PubMed]

Gabriel, S.

S. Gabriel, R. W. Lau, and C. Gabriel, Phys. Med. Biol. 41, 2251 (1996).
[CrossRef] [PubMed]

Gandhi, O. P.

O. P. Gandhi and A. Riazi, IEEE Trans. Microwave Theory Tech. 34, 228 (1986).
[CrossRef]

Ishai, P. B.

Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, I. Davidovich, F. Sakram, and A. J. Agranat, Phys. Med. Biol. 54, 3341 (2009).
[CrossRef] [PubMed]

Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, and A. J. Agranat, Phys. Rev. Lett. 100, 128102 (2008).
[CrossRef] [PubMed]

Jemec, G. B. E.

M. Mogensen, L. Theane, T. M. Jorgensen, P. E. Andrsen, and G. B. E. Jemec, J. Biophotonics 2, 442 (2009).
[CrossRef] [PubMed]

Jorgensen, T. M.

M. Mogensen, L. Theane, T. M. Jorgensen, P. E. Andrsen, and G. B. E. Jemec, J. Biophotonics 2, 442 (2009).
[CrossRef] [PubMed]

Knüttel, A.

A. Knüttel and M. Böhlau-Godau, J. Biomed. Opt. 5, 83(2000).
[CrossRef] [PubMed]

Landing, B. H.

T. R. Wells and B. H. Landing, J. Invest. Dermatol. 51, 177(1968).
[PubMed]

Lau, R. W.

S. Gabriel, R. W. Lau, and C. Gabriel, Phys. Med. Biol. 41, 2251 (1996).
[CrossRef] [PubMed]

Mogensen, M.

M. Mogensen, L. Theane, T. M. Jorgensen, P. E. Andrsen, and G. B. E. Jemec, J. Biophotonics 2, 442 (2009).
[CrossRef] [PubMed]

Ney, M.

Puzenko, A.

Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, I. Davidovich, F. Sakram, and A. J. Agranat, Phys. Med. Biol. 54, 3341 (2009).
[CrossRef] [PubMed]

Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, and A. J. Agranat, Phys. Rev. Lett. 100, 128102 (2008).
[CrossRef] [PubMed]

Riazi, A.

O. P. Gandhi and A. Riazi, IEEE Trans. Microwave Theory Tech. 34, 228 (1986).
[CrossRef]

Sakram, F.

Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, I. Davidovich, F. Sakram, and A. J. Agranat, Phys. Med. Biol. 54, 3341 (2009).
[CrossRef] [PubMed]

Stutzman, W. L.

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed. (Wiley, 2011), pp. 231–235.

Tang, W.

B. Yang, R. S. Donnan, R. Dubrovka, and W. Tang, J. Appl. Phys. 109, 104505 (2011).
[CrossRef]

Theane, L.

M. Mogensen, L. Theane, T. M. Jorgensen, P. E. Andrsen, and G. B. E. Jemec, J. Biophotonics 2, 442 (2009).
[CrossRef] [PubMed]

Thiele, G. A.

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed. (Wiley, 2011), pp. 231–235.

Wells, T. R.

T. R. Wells and B. H. Landing, J. Invest. Dermatol. 51, 177(1968).
[PubMed]

Yang, B.

B. Yang, R. S. Donnan, R. Dubrovka, and W. Tang, J. Appl. Phys. 109, 104505 (2011).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

O. P. Gandhi and A. Riazi, IEEE Trans. Microwave Theory Tech. 34, 228 (1986).
[CrossRef]

J. Appl. Phys. (1)

B. Yang, R. S. Donnan, R. Dubrovka, and W. Tang, J. Appl. Phys. 109, 104505 (2011).
[CrossRef]

J. Biomed. Opt. (2)

M. Ney and I. Abdulhalim, J. Biomed. Opt. 16, 067006(2011).
[CrossRef] [PubMed]

A. Knüttel and M. Böhlau-Godau, J. Biomed. Opt. 5, 83(2000).
[CrossRef] [PubMed]

J. Biophotonics (1)

M. Mogensen, L. Theane, T. M. Jorgensen, P. E. Andrsen, and G. B. E. Jemec, J. Biophotonics 2, 442 (2009).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

T. R. Wells and B. H. Landing, J. Invest. Dermatol. 51, 177(1968).
[PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (2)

S. Gabriel, R. W. Lau, and C. Gabriel, Phys. Med. Biol. 41, 2251 (1996).
[CrossRef] [PubMed]

Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, I. Davidovich, F. Sakram, and A. J. Agranat, Phys. Med. Biol. 54, 3341 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

Y. Feldman, A. Puzenko, P. B. Ishai, A. Caduff, and A. J. Agranat, Phys. Rev. Lett. 100, 128102 (2008).
[CrossRef] [PubMed]

Other (1)

W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed. (Wiley, 2011), pp. 231–235.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Comparisons of electromagnetic response from different subjects at the 0 min (bold), 1 minute (dashed), and 30 min (light) marks following 20 minutes of jogging. The abscissa records frequency in GHz and the ordinate-axis the measured reflection coefficient in dB.

Fig. 2
Fig. 2

Comparisons of temperature variations in different subjects from 0 to 30 minutes after 20 minutes jogging. The abscissa records time in minutes and the ordinate-axis hand-temperature in ° C . The subject-sequence has the same labeling order as Fig. 1.

Fig. 3
Fig. 3

Shows the unit-cell of the skin-layer structure in the CST model: (top left) front view of the model with unit size labeled by “a,” (top right) the structure of the helical duct, (bottom left) three-layer skin model with helical duct embedded inside and the plane-wave propagates along the + z direction. d 1 , d 2 , d 3 stand for SC, epidermis, and dermis layer, respectively.

Fig. 4
Fig. 4

Comparison of electromagnetic response with (dashed) and without (bold) multi-helical duct in the skin model.

Fig. 5
Fig. 5

Electromagnetic response of skin with embedded helix: (top) setting the permittivity of the helical duct to 4 and changing its conductivity to 160 S · m 1 (bold), 205 S · m 1 (dashed), and 250 S · m 1 (light). (Bottom) Setting the conductivity of the helical duct to 160 S · m 1 and changing its permittivity to 3.2 (bold) and 3.6 (dashed).

Fig. 6
Fig. 6

Electromagnetic response of the skin model in the absence of helical ducts (discrete points): setting the conductivity of the epidermis to 160 S · m 1 and changing the permittivity of the epidermis to 3.2 (cross) and 4 (square). 2. With the helical structure present: the permittivity and conductivity of the ducts are respectively set to 4 and 160 S · m 1 , together with the unit size “a” in Fig. 3 being 160 μm (bold), 180 μm (dashed), and 200 μm (light).

Metrics