Abstract

We report on a femtosecond nonlinear amplification fiber laser system using a vector-dispersion compressor, which consists of a transmission grating pair and multipass cell based Gires–Tournois interferometer mirrors. The mirror is designed with nearly zero group-delay dispersion and large negative third-order dispersion. As a result, the third-order dispersion of the compressor can be adjusted independently to compensate the nonlinear phase shift of amplified pulses to reduce the pulse pedestal. With this scheme, the system outputs 44fs laser pulses with little wing at 26.6W output average power and 531nJ pulse energy, corresponding to 10.8MW peak power.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, Opt. Lett. 32, 3495 (2007).
    [CrossRef] [PubMed]
  2. Y. Zaouter, D. N. Papadopoulos, M. Hanna, J. Boullet, L. Huang, C. Aguergaray, F. Druon, E. Mottay, P. Georges, and E. Cormier, Opt. Lett. 33, 107 (2008).
    [CrossRef] [PubMed]
  3. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. Cho, and M. Fermann, Opt. Express 13, 4717 (2005).
    [CrossRef] [PubMed]
  4. S. Zhou, L. Kuznetsova, A. Chong, and F. Wise, Opt. Express 13, 4869 (2005).
    [CrossRef] [PubMed]
  5. A. Chong, L. Kuznetsova, and F. W. Wise, J. Opt. Soc. Am. B 24, 1815 (2007).
    [CrossRef]
  6. D. N. Schimpf, J. Limpert, and A. Tünnermann, Opt. Express 15, 16945 (2007).
    [CrossRef] [PubMed]
  7. D. N. Papadopoulos, I. Martial, M. Hanna, F. Druon, and P. Georges, Opt. Lett. 33, 1431 (2008).
    [CrossRef] [PubMed]
  8. G. Zhu, J. Edinberg, and C. Xu, Opt. Express 15, 2530(2007).
    [CrossRef] [PubMed]
  9. Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, IEEE J. Quantum Electron. 33, 1975(1997).
    [CrossRef]
  10. B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44(2009).
    [CrossRef]
  11. Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, IEEE Photon. Technol. Lett. 20, 1088(2008).
    [CrossRef]
  12. L. Shah and M. Fermann, IEEE J. Sel. Top. Quantum Electron. 13, 552 (2007).
    [CrossRef]

2009 (1)

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44(2009).
[CrossRef]

2008 (3)

2007 (5)

2005 (2)

1997 (1)

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, IEEE J. Quantum Electron. 33, 1975(1997).
[CrossRef]

Aguergaray, C.

Boullet, J.

Chai, L.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44(2009).
[CrossRef]

Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, IEEE Photon. Technol. Lett. 20, 1088(2008).
[CrossRef]

Cho, G.

Chong, A.

Cormier, E.

Druon, F.

Edinberg, J.

Eidam, T.

Fang, X. H.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44(2009).
[CrossRef]

Fermann, M.

Georges, P.

Hanna, M.

Hartl, I.

Hu, M. L.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44(2009).
[CrossRef]

Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, IEEE Photon. Technol. Lett. 20, 1088(2008).
[CrossRef]

Huang, L.

Imeshev, G.

Itatani, T.

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, IEEE J. Quantum Electron. 33, 1975(1997).
[CrossRef]

Kobayashi, K.

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, IEEE J. Quantum Electron. 33, 1975(1997).
[CrossRef]

Kuznetsova, L.

Limpert, J.

Liu, B. W.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44(2009).
[CrossRef]

Liu, Z.

Martial, I.

Mottay, E.

Nakagawa, T.

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, IEEE J. Quantum Electron. 33, 1975(1997).
[CrossRef]

Papadopoulos, D. N.

Röser, F.

Rothhardt, J.

Schimpf, D. N.

Schmidt, O.

Shah, L.

Song, Y. J.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44(2009).
[CrossRef]

Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, IEEE Photon. Technol. Lett. 20, 1088(2008).
[CrossRef]

Sugaya, T.

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, IEEE J. Quantum Electron. 33, 1975(1997).
[CrossRef]

Tian, Z.

Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, IEEE Photon. Technol. Lett. 20, 1088(2008).
[CrossRef]

Torizuka, K.

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, IEEE J. Quantum Electron. 33, 1975(1997).
[CrossRef]

Tünnermann, A.

Wang, C. L.

Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, IEEE Photon. Technol. Lett. 20, 1088(2008).
[CrossRef]

Wang, C. Y.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44(2009).
[CrossRef]

Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, IEEE Photon. Technol. Lett. 20, 1088(2008).
[CrossRef]

Wise, F.

Wise, F. W.

Wu, Y. Z.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44(2009).
[CrossRef]

Xing, Q. R.

Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, IEEE Photon. Technol. Lett. 20, 1088(2008).
[CrossRef]

Xu, C.

Zaouter, Y.

Zhang, Z.

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, IEEE J. Quantum Electron. 33, 1975(1997).
[CrossRef]

Zheltikov, A. M.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44(2009).
[CrossRef]

Zhou, S.

Zhu, G.

IEEE J. Quantum Electron. (1)

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, IEEE J. Quantum Electron. 33, 1975(1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Shah and M. Fermann, IEEE J. Sel. Top. Quantum Electron. 13, 552 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, IEEE Photon. Technol. Lett. 20, 1088(2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, Laser Phys. Lett. 6, 44(2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup. LD, Laser diode. The gratings and G-T mirrors comprise the VDC, which is shown in the dotted frame. Inset: photograph of spot pattern on the G-T mirror. (b) Measured GDD curve of the G-T mirror, (c) measured TOD curve of the G-T mirror.

Fig. 2
Fig. 2

Numerical simulation results. (a) Output spectrum of the fiber amplifier, with temporal shape in the inset. The amplifier outputs 2.7 ps pulses with 27 W average power and 540 nJ pulse energy. (b) Autocorrelation traces of pulses compressed by the VDC (black solid curve) and the grating compressor (red dotted curve).

Fig. 3
Fig. 3

Result of laser pulses compressed by the VDC and the grating compressor, respectively, at different output power. (a)–(c) The output spectrum, (d)–(f) the autocorrelation traces of pulses compressed by the VDC (black solid curve) and the grating compressor (red dotted curve).

Fig. 4
Fig. 4

Bounce number on G-T mirrors and the RMS and FWHM widths of the autocorrelation traces of pulses versus the pulses’ average power. The amplified pulse is compressed by the grating-pair compressor (red curves) and the VDC (black curves).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D c = [ D 2 c D 3 c ] = [ D 2 g D 2 m D 3 g D 3 m ] [ l n ] ,
D 2 c = D 2 g l .

Metrics